Spaces:
Running
Running
import faiss | |
import numpy as np | |
# Load FAISS index | |
FAISS_PATH = "asa_faiss.index" | |
index = faiss.read_index(FAISS_PATH) | |
# Example query vector (random, replace with actual embedding from your model) | |
query_vector = np.random.rand(1, index.d).astype('float32') | |
# Search FAISS index | |
D, I = index.search(query_vector, k=1) # k=1 means get 1 nearest neighbor | |
print(f"Closest match index: {I[0][0]}, Distance: {D[0][0]}") | |