FuturesonyAi / app.py
Futuresony's picture
Update app.py
c17e36f verified
raw
history blame
420 Bytes
import faiss
import numpy as np
# Load FAISS index
FAISS_PATH = "asa_faiss.index"
index = faiss.read_index(FAISS_PATH)
# Example query vector (random, replace with actual embedding from your model)
query_vector = np.random.rand(1, index.d).astype('float32')
# Search FAISS index
D, I = index.search(query_vector, k=1) # k=1 means get 1 nearest neighbor
print(f"Closest match index: {I[0][0]}, Distance: {D[0][0]}")