Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from transformers import pipeline | |
import re | |
import nltk | |
from nltk.corpus import stopwords | |
from nltk.stem import WordNetLemmatizer | |
# Download necessary NLTK resources | |
nltk.download('stopwords') | |
nltk.download('wordnet') | |
# Initialize the zero-shot classification pipeline | |
classifier = pipeline("zero-shot-classification", model="Fralet/personality") | |
# Define the default candidate labels (modifiable if different labels are needed) | |
default_labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"] | |
# Streamlit interface setup | |
st.title("Resume-based Personality Prediction by Serikov Ayanbek") | |
# Load data from Excel | |
data = pd.read_excel("your_excel_file.xlsx") # Adjust file path/name as necessary | |
# Preprocess text function | |
def preprocess_text(text): | |
text = re.sub(r'\W', ' ', str(text)) | |
text = text.lower() | |
text = re.sub(r'\s+[a-z]\s+', ' ', text) | |
text = re.sub(r'^[a-z]\s+', ' ', text) | |
text is re.sub(r'\s+', ' ', text) | |
stop_words = set(stopwords.words('english')) | |
lemmatizer = WordNetLemmatizer() | |
tokens = text.split() | |
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words] | |
return ' '.join(tokens) | |
# Combine relevant text columns | |
data['combined_text'] = data[['CV/Resume'] + [f'Q{i}' for i in range(1, 37)]].agg(' '.join, axis=1) | |
data['processed_text'] = data['combined_text'].apply(preprocess_text) | |
# Streamlit user inputs | |
user_labels = st.text_input("Enter custom labels separated by comma (optional)") | |
labels = user_labels.split(',') if user_labels else default_labels | |
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5) | |
if st.button("Predict Personality"): | |
# Predict personality from processed text | |
data['predictions'] = data['processed_text'].apply(lambda x: classifier(x, labels)) | |
# Extract predictions above confidence threshold and display alongside MAX labels | |
data['predicted_labels'] = data['predictions'].apply(lambda x: {label: f"{score*100:.2f}%" for label, score in zip(x['labels'], x['scores']) if score >= confidence_threshold}) | |
data['MAX_labels'] = data.apply(lambda x: [x['MAX1'], x['MAX2'], x['MAX3']], axis=1) | |
st.write("Predictions and Labels:") | |
st.dataframe(data[['True_label', 'Predicted', 'predicted_labels', 'MAX_labels']]) | |
# Run this last part to show the DataFrame outside the button press if needed | |
st.dataframe(data) |