File size: 2,302 Bytes
1b50b66
e27efab
895141b
2ee3ecc
c05213f
2ee3ecc
 
76aff4b
 
2ee3ecc
 
1b50b66
e27efab
d44d169
1b50b66
e27efab
2ee3ecc
1b50b66
76aff4b
b4628ad
76aff4b
 
367a123
76aff4b
 
 
 
 
 
 
 
 
 
 
 
 
2ee3ecc
 
 
 
 
 
 
 
e27efab
76aff4b
 
 
 
2ee3ecc
76aff4b
 
2ee3ecc
76aff4b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import streamlit as st
from transformers import pipeline
import pandas as pd
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer

# Download necessary NLTK resources
nltk.download('stopwords')
nltk.download('wordnet')

# Initialize the zero-shot classification pipeline
classifier = pipeline("zero-shot-classification", model="Fralet/personality")

# Define the candidate labels according to the Enneagram types
default_labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]

# Streamlit interface setup
st.title("Resume-based Personality Prediction by Serikov Ayanbek")

# Load data from Excel
data = pd.read_excel("ResponseTest.xlsx")  # Replace 'your_excel_file.xlsx' with your actual file name

# Preprocess text function
def preprocess_text(text):
    text = re.sub(r'\W', ' ', str(text))
    text = text.lower()
    text = re.sub(r'\s+[a-z]\s+', ' ', text)
    text = re.sub(r'^[a-z]\s+', ' ', text)
    text = re.sub(r'\s+', ' ', text)
    stop_words = set(stopwords.words('english'))
    lemmatizer = WordNetLemmatizer()
    tokens = text.split()
    tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words]
    return ' '.join(tokens)

# User-defined labels option
user_labels = st.text_input("Enter custom labels separated by comma (optional)")
labels = user_labels.split(',') if user_labels else default_labels

# Prediction confidence threshold
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5)

if st.button("Predict Personality"):
    # Combine relevant text columns
    question_columns = [f'Q{i}' for i in range(1, 37)]  # Adjust range if there are more or fewer question columns
    data['combined_text'] = data[['CV/Resume'] + question_columns].agg(' '.join, axis=1)
    data['processed_text'] = data['combined_text'].apply(preprocess_text)
    
    # Make predictions
    predictions = data['processed_text'].apply(lambda x: classifier(x, labels))
    
    # Extract and display predictions
    data['predicted_labels'] = predictions.apply(lambda x: [label for label, score in zip(x['labels'], x['scores']) if score >= confidence_threshold])
    st.dataframe(data[['True_label', 'Predicted', 'predicted_labels']])