Spaces:
Running
Running
File size: 2,302 Bytes
1b50b66 e27efab 895141b 2ee3ecc c05213f 2ee3ecc 76aff4b 2ee3ecc 1b50b66 e27efab d44d169 1b50b66 e27efab 2ee3ecc 1b50b66 76aff4b b4628ad 76aff4b 367a123 76aff4b 2ee3ecc e27efab 76aff4b 2ee3ecc 76aff4b 2ee3ecc 76aff4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import streamlit as st
from transformers import pipeline
import pandas as pd
import re
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
# Download necessary NLTK resources
nltk.download('stopwords')
nltk.download('wordnet')
# Initialize the zero-shot classification pipeline
classifier = pipeline("zero-shot-classification", model="Fralet/personality")
# Define the candidate labels according to the Enneagram types
default_labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"]
# Streamlit interface setup
st.title("Resume-based Personality Prediction by Serikov Ayanbek")
# Load data from Excel
data = pd.read_excel("ResponseTest.xlsx") # Replace 'your_excel_file.xlsx' with your actual file name
# Preprocess text function
def preprocess_text(text):
text = re.sub(r'\W', ' ', str(text))
text = text.lower()
text = re.sub(r'\s+[a-z]\s+', ' ', text)
text = re.sub(r'^[a-z]\s+', ' ', text)
text = re.sub(r'\s+', ' ', text)
stop_words = set(stopwords.words('english'))
lemmatizer = WordNetLemmatizer()
tokens = text.split()
tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words]
return ' '.join(tokens)
# User-defined labels option
user_labels = st.text_input("Enter custom labels separated by comma (optional)")
labels = user_labels.split(',') if user_labels else default_labels
# Prediction confidence threshold
confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5)
if st.button("Predict Personality"):
# Combine relevant text columns
question_columns = [f'Q{i}' for i in range(1, 37)] # Adjust range if there are more or fewer question columns
data['combined_text'] = data[['CV/Resume'] + question_columns].agg(' '.join, axis=1)
data['processed_text'] = data['combined_text'].apply(preprocess_text)
# Make predictions
predictions = data['processed_text'].apply(lambda x: classifier(x, labels))
# Extract and display predictions
data['predicted_labels'] = predictions.apply(lambda x: [label for label, score in zip(x['labels'], x['scores']) if score >= confidence_threshold])
st.dataframe(data[['True_label', 'Predicted', 'predicted_labels']])
|