Flux9665's picture
initial commit
6faeba1
raw
history blame
30.8 kB
import torch
import torch.nn.functional as torchfunc
from torch.nn import Linear
from torch.nn import Sequential
from torch.nn import Tanh
from Architectures.GeneralLayers.ConditionalLayerNorm import AdaIN1d
from Architectures.GeneralLayers.ConditionalLayerNorm import ConditionalLayerNorm
from Architectures.GeneralLayers.Conformer import Conformer
from Architectures.GeneralLayers.LengthRegulator import LengthRegulator
from Architectures.ToucanTTS.StochasticToucanTTSLoss import StochasticToucanTTSLoss
from Architectures.ToucanTTS.flow_matching import CFMDecoder
from Preprocessing.articulatory_features import get_feature_to_index_lookup
from Utility.utils import initialize
from Utility.utils import integrate_with_utt_embed
from Utility.utils import make_non_pad_mask
class ToucanTTS(torch.nn.Module):
"""
ToucanTTS module, which is based on a FastSpeech 2 module,
but with lots of designs from different architectures accumulated
and some major components added to put a large focus on
multilinguality and controllability.
Contributions inspired from elsewhere:
- The Decoder is a flow matching network, like in Matcha-TTS and StableTTS
- Pitch and energy values are averaged per-phone, as in FastPitch to enable great controllability
- The encoder and decoder are Conformers, like in ESPnet
"""
def __init__(self,
# network structure related
input_feature_dimensions=64,
spec_channels=128,
attention_dimension=192,
attention_heads=4,
positionwise_conv_kernel_size=1,
use_scaled_positional_encoding=True,
init_type="xavier_uniform",
use_macaron_style_in_conformer=True,
use_cnn_in_conformer=True,
# encoder
encoder_layers=6,
encoder_units=1536,
encoder_normalize_before=True,
encoder_concat_after=False,
conformer_encoder_kernel_size=7,
transformer_enc_dropout_rate=0.1,
transformer_enc_positional_dropout_rate=0.1,
transformer_enc_attn_dropout_rate=0.1,
# decoder
decoder_layers=1,
decoder_units=1536,
decoder_concat_after=False,
conformer_decoder_kernel_size=31, # 31 works for spectrograms
decoder_normalize_before=True,
transformer_dec_dropout_rate=0.1,
transformer_dec_positional_dropout_rate=0.1,
transformer_dec_attn_dropout_rate=0.1,
# duration predictor
prosody_channels=8,
duration_predictor_layers=2,
duration_predictor_kernel_size=3,
duration_predictor_dropout_rate=0.2,
# pitch predictor
pitch_predictor_layers=2,
pitch_predictor_kernel_size=5,
pitch_predictor_dropout=0.3,
pitch_embed_kernel_size=1,
pitch_embed_dropout=0.0,
# energy predictor
energy_predictor_layers=2,
energy_predictor_kernel_size=3,
energy_predictor_dropout=0.5,
energy_embed_kernel_size=1,
energy_embed_dropout=0.0,
# cfm decoder
cfm_filter_channels=512,
cfm_heads=4,
cfm_layers=5,
cfm_kernel_size=5,
cfm_p_dropout=0.1,
# additional features
utt_embed_dim=192, # 192 dim speaker embedding + 16 dim prosody embedding optionally (see older version, this one doesn't use the prosody embedding)
lang_embs=8000,
lang_emb_size=192,
integrate_language_embedding_into_encoder_out=False,
embedding_integration="AdaIN", # ["AdaIN" | "ConditionalLayerNorm" | "ConcatProject"]
):
super().__init__()
self.config = {
"input_feature_dimensions" : input_feature_dimensions,
"attention_dimension" : attention_dimension,
"attention_heads" : attention_heads,
"positionwise_conv_kernel_size" : positionwise_conv_kernel_size,
"use_scaled_positional_encoding" : use_scaled_positional_encoding,
"init_type" : init_type,
"use_macaron_style_in_conformer" : use_macaron_style_in_conformer,
"use_cnn_in_conformer" : use_cnn_in_conformer,
"encoder_layers" : encoder_layers,
"encoder_units" : encoder_units,
"encoder_normalize_before" : encoder_normalize_before,
"encoder_concat_after" : encoder_concat_after,
"conformer_encoder_kernel_size" : conformer_encoder_kernel_size,
"transformer_enc_dropout_rate" : transformer_enc_dropout_rate,
"transformer_enc_positional_dropout_rate" : transformer_enc_positional_dropout_rate,
"transformer_enc_attn_dropout_rate" : transformer_enc_attn_dropout_rate,
"decoder_layers" : decoder_layers,
"decoder_units" : decoder_units,
"decoder_concat_after" : decoder_concat_after,
"conformer_decoder_kernel_size" : conformer_decoder_kernel_size,
"decoder_normalize_before" : decoder_normalize_before,
"transformer_dec_dropout_rate" : transformer_dec_dropout_rate,
"transformer_dec_positional_dropout_rate" : transformer_dec_positional_dropout_rate,
"transformer_dec_attn_dropout_rate" : transformer_dec_attn_dropout_rate,
"duration_predictor_layers" : duration_predictor_layers,
"duration_predictor_kernel_size" : duration_predictor_kernel_size,
"duration_predictor_dropout_rate" : duration_predictor_dropout_rate,
"pitch_predictor_layers" : pitch_predictor_layers,
"pitch_predictor_kernel_size" : pitch_predictor_kernel_size,
"pitch_predictor_dropout" : pitch_predictor_dropout,
"pitch_embed_kernel_size" : pitch_embed_kernel_size,
"pitch_embed_dropout" : pitch_embed_dropout,
"energy_predictor_layers" : energy_predictor_layers,
"energy_predictor_kernel_size" : energy_predictor_kernel_size,
"energy_predictor_dropout" : energy_predictor_dropout,
"energy_embed_kernel_size" : energy_embed_kernel_size,
"energy_embed_dropout" : energy_embed_dropout,
"spec_channels" : spec_channels,
"cfm_filter_channels" : cfm_filter_channels,
"prosody_channels" : prosody_channels,
"cfm_heads" : cfm_heads,
"cfm_layers" : cfm_layers,
"cfm_kernel_size" : cfm_kernel_size,
"cfm_p_dropout" : cfm_p_dropout,
"utt_embed_dim" : utt_embed_dim,
"lang_embs" : lang_embs,
"lang_emb_size" : lang_emb_size,
"embedding_integration" : embedding_integration,
"integrate_language_embedding_into_encoder_out": integrate_language_embedding_into_encoder_out
}
self.input_feature_dimensions = input_feature_dimensions
self.attention_dimension = attention_dimension
self.use_scaled_pos_enc = use_scaled_positional_encoding
self.multilingual_model = lang_embs is not None
self.multispeaker_model = utt_embed_dim is not None
self.integrate_language_embedding_into_encoder_out = integrate_language_embedding_into_encoder_out
self.use_conditional_layernorm_embedding_integration = embedding_integration in ["AdaIN", "ConditionalLayerNorm"]
articulatory_feature_embedding = Sequential(Linear(input_feature_dimensions, 100), Tanh(), Linear(100, attention_dimension))
self.encoder = Conformer(conformer_type="encoder",
attention_dim=attention_dimension,
attention_heads=attention_heads,
linear_units=encoder_units,
num_blocks=encoder_layers,
input_layer=articulatory_feature_embedding,
dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate,
normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
use_cnn_module=True,
cnn_module_kernel=conformer_encoder_kernel_size,
zero_triu=False,
utt_embed=utt_embed_dim,
lang_embs=lang_embs,
lang_emb_size=lang_emb_size,
use_output_norm=True,
embedding_integration=embedding_integration)
if self.integrate_language_embedding_into_encoder_out:
if embedding_integration == "AdaIN":
self.language_embedding_infusion = AdaIN1d(style_dim=lang_emb_size, num_features=attention_dimension)
elif embedding_integration == "ConditionalLayerNorm":
self.language_embedding_infusion = ConditionalLayerNorm(speaker_embedding_dim=lang_emb_size, hidden_dim=attention_dimension)
else:
self.language_embedding_infusion = torch.nn.Linear(attention_dimension + lang_emb_size, attention_dimension)
self.pitch_embed = Sequential(torch.nn.Conv1d(in_channels=1,
out_channels=attention_dimension,
kernel_size=pitch_embed_kernel_size,
padding=(pitch_embed_kernel_size - 1) // 2),
torch.nn.Dropout(pitch_embed_dropout))
self.energy_embed = Sequential(torch.nn.Conv1d(in_channels=1, out_channels=attention_dimension, kernel_size=energy_embed_kernel_size,
padding=(energy_embed_kernel_size - 1) // 2),
torch.nn.Dropout(energy_embed_dropout))
self.length_regulator = LengthRegulator()
self.decoder = Conformer(conformer_type="decoder",
attention_dim=attention_dimension,
attention_heads=attention_heads,
linear_units=decoder_units,
num_blocks=decoder_layers,
input_layer=None,
dropout_rate=transformer_dec_dropout_rate,
positional_dropout_rate=transformer_dec_positional_dropout_rate,
attention_dropout_rate=transformer_dec_attn_dropout_rate,
normalize_before=decoder_normalize_before,
concat_after=decoder_concat_after,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
use_cnn_module=use_cnn_in_conformer,
cnn_module_kernel=conformer_decoder_kernel_size,
use_output_norm=embedding_integration not in ["AdaIN", "ConditionalLayerNorm"],
utt_embed=utt_embed_dim,
embedding_integration=embedding_integration)
self.output_projection = torch.nn.Linear(attention_dimension, spec_channels)
self.cfm_projection = torch.nn.Linear(attention_dimension, spec_channels)
self.pitch_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels)
self.energy_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels)
self.duration_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels)
# initialize parameters
self._reset_parameters(init_type=init_type)
if lang_embs is not None:
torch.nn.init.normal_(self.encoder.language_embedding.weight, mean=0, std=attention_dimension ** -0.5)
# the following modules have their own init function, so they come AFTER the init.
self.duration_predictor = CFMDecoder(hidden_channels=prosody_channels,
out_channels=1,
filter_channels=prosody_channels,
n_heads=1,
n_layers=duration_predictor_layers,
kernel_size=duration_predictor_kernel_size,
p_dropout=duration_predictor_dropout_rate,
gin_channels=utt_embed_dim)
self.pitch_predictor = CFMDecoder(hidden_channels=prosody_channels,
out_channels=1,
filter_channels=prosody_channels,
n_heads=1,
n_layers=pitch_predictor_layers,
kernel_size=pitch_predictor_kernel_size,
p_dropout=pitch_predictor_dropout,
gin_channels=utt_embed_dim)
self.energy_predictor = CFMDecoder(hidden_channels=prosody_channels,
out_channels=1,
filter_channels=prosody_channels,
n_heads=1,
n_layers=energy_predictor_layers,
kernel_size=energy_predictor_kernel_size,
p_dropout=energy_predictor_dropout,
gin_channels=utt_embed_dim)
self.flow_matching_decoder = CFMDecoder(hidden_channels=spec_channels,
out_channels=spec_channels,
filter_channels=cfm_filter_channels,
n_heads=cfm_heads,
n_layers=cfm_layers,
kernel_size=cfm_kernel_size,
p_dropout=cfm_p_dropout,
gin_channels=utt_embed_dim)
self.criterion = StochasticToucanTTSLoss()
def forward(self,
text_tensors,
text_lengths,
gold_speech,
speech_lengths,
gold_durations,
gold_pitch,
gold_energy,
utterance_embedding,
return_feats=False,
lang_ids=None,
run_stochastic=True
):
"""
Args:
return_feats (Boolean): whether to return the predicted spectrogram
text_tensors (LongTensor): Batch of padded text vectors (B, Tmax).
text_lengths (LongTensor): Batch of lengths of each input (B,).
gold_speech (Tensor): Batch of padded target features (B, Lmax, odim).
speech_lengths (LongTensor): Batch of the lengths of each target (B,).
gold_durations (LongTensor): Batch of padded durations (B, Tmax + 1).
gold_pitch (Tensor): Batch of padded token-averaged pitch (B, Tmax + 1, 1).
gold_energy (Tensor): Batch of padded token-averaged energy (B, Tmax + 1, 1).
lang_ids (LongTensor): The language IDs used to access the language embedding table, if the model is multilingual
utterance_embedding (Tensor): Batch of embeddings to condition the TTS on, if the model is multispeaker
run_stochastic (Bool): Whether to detach the inputs to the normalizing flow for stability.
"""
outs, \
stochastic_loss, \
duration_loss, \
pitch_loss, \
energy_loss = self._forward(text_tensors=text_tensors,
text_lengths=text_lengths,
gold_speech=gold_speech,
speech_lengths=speech_lengths,
gold_durations=gold_durations,
gold_pitch=gold_pitch,
gold_energy=gold_energy,
utterance_embedding=utterance_embedding,
is_inference=False,
lang_ids=lang_ids,
run_stochastic=run_stochastic)
# calculate loss
regression_loss = self.criterion(predicted_features=outs,
gold_features=gold_speech,
features_lengths=speech_lengths)
if return_feats:
return regression_loss, stochastic_loss, duration_loss, pitch_loss, energy_loss, outs
return regression_loss, stochastic_loss, duration_loss, pitch_loss, energy_loss
def _forward(self,
text_tensors,
text_lengths,
gold_speech=None,
speech_lengths=None,
gold_durations=None,
gold_pitch=None,
gold_energy=None,
is_inference=False,
utterance_embedding=None,
lang_ids=None,
run_stochastic=False):
text_tensors = torch.clamp(text_tensors, max=1.0)
# this is necessary, because of the way we represent modifiers to keep them identifiable.
if not self.multilingual_model:
lang_ids = None
if not self.multispeaker_model:
utterance_embedding = None
# encoding the texts
text_masks = make_non_pad_mask(text_lengths, device=text_lengths.device).unsqueeze(-2)
encoded_texts, _ = self.encoder(text_tensors, text_masks, utterance_embedding=utterance_embedding, lang_ids=lang_ids)
if self.integrate_language_embedding_into_encoder_out:
lang_embs = self.encoder.language_embedding(lang_ids).squeeze(-1)
encoded_texts = integrate_with_utt_embed(hs=encoded_texts, utt_embeddings=lang_embs, projection=self.language_embedding_infusion, embedding_training=self.use_conditional_layernorm_embedding_integration)
if is_inference:
# predicting pitch, energy and durations
reduced_pitch_space = torchfunc.dropout(self.pitch_latent_reduction(encoded_texts), p=0.1).transpose(1, 2)
pitch_predictions = self.pitch_predictor(mu=reduced_pitch_space, mask=text_masks.float(), n_timesteps=10, temperature=1.0, c=utterance_embedding)
embedded_pitch_curve = self.pitch_embed(pitch_predictions).transpose(1, 2)
reduced_energy_space = torchfunc.dropout(self.energy_latent_reduction(encoded_texts + embedded_pitch_curve), p=0.1).transpose(1, 2)
energy_predictions = self.energy_predictor(mu=reduced_energy_space, mask=text_masks.float(), n_timesteps=10, temperature=1.0, c=utterance_embedding)
embedded_energy_curve = self.energy_embed(energy_predictions).transpose(1, 2)
reduced_duration_space = torchfunc.dropout(self.duration_latent_reduction(encoded_texts + embedded_pitch_curve + embedded_energy_curve), p=0.1).transpose(1, 2)
predicted_durations = self.duration_predictor(mu=reduced_duration_space, mask=text_masks.float(), n_timesteps=10, temperature=1.0, c=utterance_embedding)
predicted_durations = torch.clamp(torch.ceil(predicted_durations), min=0.0).long().squeeze(1)
# modifying the predictions
for phoneme_index, phoneme_vector in enumerate(text_tensors.squeeze(0)):
if phoneme_vector[get_feature_to_index_lookup()["word-boundary"]] == 1:
predicted_durations[0][phoneme_index] = 0
# enriching the text with pitch and energy info
enriched_encoded_texts = encoded_texts + embedded_pitch_curve + embedded_energy_curve
# predicting durations for text and upsampling accordingly
upsampled_enriched_encoded_texts = self.length_regulator(enriched_encoded_texts, predicted_durations)
else:
# training with teacher forcing
reduced_pitch_space = torchfunc.dropout(self.pitch_latent_reduction(encoded_texts), p=0.1).transpose(1, 2)
pitch_loss, _ = self.pitch_predictor.compute_loss(mu=reduced_pitch_space,
x1=gold_pitch.transpose(1, 2),
mask=text_masks.float(),
c=utterance_embedding)
embedded_pitch_curve = self.pitch_embed(gold_pitch.transpose(1, 2)).transpose(1, 2)
reduced_energy_space = torchfunc.dropout(self.energy_latent_reduction(encoded_texts + embedded_pitch_curve), p=0.1).transpose(1, 2)
energy_loss, _ = self.energy_predictor.compute_loss(mu=reduced_energy_space,
x1=gold_energy.transpose(1, 2),
mask=text_masks.float(),
c=utterance_embedding)
embedded_energy_curve = self.energy_embed(gold_energy.transpose(1, 2)).transpose(1, 2)
reduced_duration_space = torchfunc.dropout(self.duration_latent_reduction(encoded_texts + embedded_pitch_curve + embedded_energy_curve), p=0.1).transpose(1, 2)
duration_loss, _ = self.duration_predictor.compute_loss(mu=reduced_duration_space,
x1=gold_durations.unsqueeze(-1).transpose(1, 2).float(),
mask=text_masks.float(),
c=utterance_embedding)
enriched_encoded_texts = encoded_texts + embedded_energy_curve + embedded_pitch_curve
upsampled_enriched_encoded_texts = self.length_regulator(enriched_encoded_texts, gold_durations)
# decoding spectrogram
decoder_masks = make_non_pad_mask(speech_lengths, device=speech_lengths.device).unsqueeze(-2) if speech_lengths is not None and not is_inference else None
decoded_speech, _ = self.decoder(upsampled_enriched_encoded_texts, decoder_masks, utterance_embedding=utterance_embedding)
preliminary_spectrogram = self.output_projection(decoded_speech)
if is_inference:
if run_stochastic:
refined_codec_frames = self.flow_matching_decoder(mu=self.cfm_projection(decoded_speech).transpose(1, 2),
mask=make_non_pad_mask([len(decoded_speech[0])], device=decoded_speech.device).unsqueeze(-2).float(),
n_timesteps=15,
temperature=0.2,
c=utterance_embedding).transpose(1, 2)
else:
refined_codec_frames = preliminary_spectrogram
return refined_codec_frames, \
predicted_durations.squeeze(), \
pitch_predictions.squeeze(), \
energy_predictions.squeeze()
else:
if run_stochastic:
stochastic_loss, _ = self.flow_matching_decoder.compute_loss(x1=gold_speech.transpose(1, 2),
mask=decoder_masks.float(),
mu=self.cfm_projection(decoded_speech).transpose(1, 2),
c=utterance_embedding)
else:
stochastic_loss = None
return preliminary_spectrogram, \
stochastic_loss, \
duration_loss, \
pitch_loss, \
energy_loss
@torch.inference_mode()
def inference(self,
text,
speech=None,
utterance_embedding=None,
return_duration_pitch_energy=False,
lang_id=None,
run_stochastic=True):
"""
Args:
text (LongTensor): Input sequence of characters (T,).
speech (Tensor, optional): Feature sequence to extract style (N, idim).
return_duration_pitch_energy (Boolean): whether to return the list of predicted durations for nicer plotting
lang_id (LongTensor): The language ID used to access the language embedding table, if the model is multilingual
utterance_embedding (Tensor): Embedding to condition the TTS on, if the model is multispeaker
run_stochastic (bool): whether to use the output of the stochastic or of the out_projection to generate codec frames
"""
self.eval()
# setup batch axis
ilens = torch.tensor([text.shape[0]], dtype=torch.long, device=text.device)
text_pseudobatched, speech_pseudobatched = text.unsqueeze(0), None
if speech is not None:
speech_pseudobatched = speech.unsqueeze(0)
utterance_embeddings = utterance_embedding.unsqueeze(0) if utterance_embedding is not None else None
outs, \
duration_predictions, \
pitch_predictions, \
energy_predictions = self._forward(text_pseudobatched,
ilens,
speech_pseudobatched,
is_inference=True,
utterance_embedding=utterance_embeddings,
lang_ids=lang_id,
run_stochastic=run_stochastic) # (1, L, odim)
self.train()
if return_duration_pitch_energy:
return outs.squeeze().transpose(0, 1), duration_predictions, pitch_predictions, energy_predictions
return outs.squeeze().transpose(0, 1)
def _reset_parameters(self, init_type="xavier_uniform"):
# initialize parameters
if init_type != "pytorch":
initialize(self, init_type)
def reset_postnet(self, init_type="xavier_uniform"):
# useful for after they explode
initialize(self.flow_matching_decoder, init_type)
if __name__ == '__main__':
model = ToucanTTS()
print(sum(p.numel() for p in model.parameters() if p.requires_grad))
print(" TESTING TRAINING ")
dummy_text_batch = torch.randint(low=0, high=2, size=[3, 3, 64]).float() # [Batch, Sequence Length, Features per Phone]
dummy_text_lens = torch.LongTensor([2, 3, 3])
dummy_speech_batch = torch.randn([3, 30, 128]) # [Batch, Sequence Length, Spectrogram Buckets]
dummy_speech_lens = torch.LongTensor([10, 30, 20])
dummy_durations = torch.LongTensor([[10, 0, 0], [10, 15, 5], [5, 5, 10]])
dummy_pitch = torch.Tensor([[[1.0], [0.], [0.]], [[1.1], [1.2], [0.8]], [[1.1], [1.2], [0.8]]])
dummy_energy = torch.Tensor([[[1.0], [1.3], [0.]], [[1.1], [1.4], [0.8]], [[1.1], [1.2], [0.8]]])
dummy_utterance_embed = torch.randn([3, 192]) # [Batch, Dimensions of Speaker Embedding]
dummy_language_id = torch.LongTensor([5, 3, 2])
ce, fl, dl, pl, el = model(dummy_text_batch,
dummy_text_lens,
dummy_speech_batch,
dummy_speech_lens,
dummy_durations,
dummy_pitch,
dummy_energy,
utterance_embedding=dummy_utterance_embed,
lang_ids=dummy_language_id)
loss = ce + dl + pl + el + fl
print(loss)
loss.backward()
print(" TESTING INFERENCE ")
dummy_text_batch = torch.randint(low=0, high=2, size=[12, 64]).float() # [Sequence Length, Features per Phone]
dummy_utterance_embed = torch.randn([192]) # [Dimensions of Speaker Embedding]
dummy_language_id = torch.LongTensor([2])
print(model.inference(dummy_text_batch,
utterance_embedding=dummy_utterance_embed,
lang_id=dummy_language_id).shape)