Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,769 Bytes
6faeba1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
import torch
import torch.nn.functional as torchfunc
from torch.nn import Linear
from torch.nn import Sequential
from torch.nn import Tanh
from Architectures.GeneralLayers.ConditionalLayerNorm import AdaIN1d
from Architectures.GeneralLayers.ConditionalLayerNorm import ConditionalLayerNorm
from Architectures.GeneralLayers.Conformer import Conformer
from Architectures.GeneralLayers.LengthRegulator import LengthRegulator
from Architectures.ToucanTTS.StochasticToucanTTSLoss import StochasticToucanTTSLoss
from Architectures.ToucanTTS.flow_matching import CFMDecoder
from Preprocessing.articulatory_features import get_feature_to_index_lookup
from Utility.utils import initialize
from Utility.utils import integrate_with_utt_embed
from Utility.utils import make_non_pad_mask
class ToucanTTS(torch.nn.Module):
"""
ToucanTTS module, which is based on a FastSpeech 2 module,
but with lots of designs from different architectures accumulated
and some major components added to put a large focus on
multilinguality and controllability.
Contributions inspired from elsewhere:
- The Decoder is a flow matching network, like in Matcha-TTS and StableTTS
- Pitch and energy values are averaged per-phone, as in FastPitch to enable great controllability
- The encoder and decoder are Conformers, like in ESPnet
"""
def __init__(self,
# network structure related
input_feature_dimensions=64,
spec_channels=128,
attention_dimension=192,
attention_heads=4,
positionwise_conv_kernel_size=1,
use_scaled_positional_encoding=True,
init_type="xavier_uniform",
use_macaron_style_in_conformer=True,
use_cnn_in_conformer=True,
# encoder
encoder_layers=6,
encoder_units=1536,
encoder_normalize_before=True,
encoder_concat_after=False,
conformer_encoder_kernel_size=7,
transformer_enc_dropout_rate=0.1,
transformer_enc_positional_dropout_rate=0.1,
transformer_enc_attn_dropout_rate=0.1,
# decoder
decoder_layers=1,
decoder_units=1536,
decoder_concat_after=False,
conformer_decoder_kernel_size=31, # 31 works for spectrograms
decoder_normalize_before=True,
transformer_dec_dropout_rate=0.1,
transformer_dec_positional_dropout_rate=0.1,
transformer_dec_attn_dropout_rate=0.1,
# duration predictor
prosody_channels=8,
duration_predictor_layers=2,
duration_predictor_kernel_size=3,
duration_predictor_dropout_rate=0.2,
# pitch predictor
pitch_predictor_layers=2,
pitch_predictor_kernel_size=5,
pitch_predictor_dropout=0.3,
pitch_embed_kernel_size=1,
pitch_embed_dropout=0.0,
# energy predictor
energy_predictor_layers=2,
energy_predictor_kernel_size=3,
energy_predictor_dropout=0.5,
energy_embed_kernel_size=1,
energy_embed_dropout=0.0,
# cfm decoder
cfm_filter_channels=512,
cfm_heads=4,
cfm_layers=5,
cfm_kernel_size=5,
cfm_p_dropout=0.1,
# additional features
utt_embed_dim=192, # 192 dim speaker embedding + 16 dim prosody embedding optionally (see older version, this one doesn't use the prosody embedding)
lang_embs=8000,
lang_emb_size=192,
integrate_language_embedding_into_encoder_out=False,
embedding_integration="AdaIN", # ["AdaIN" | "ConditionalLayerNorm" | "ConcatProject"]
):
super().__init__()
self.config = {
"input_feature_dimensions" : input_feature_dimensions,
"attention_dimension" : attention_dimension,
"attention_heads" : attention_heads,
"positionwise_conv_kernel_size" : positionwise_conv_kernel_size,
"use_scaled_positional_encoding" : use_scaled_positional_encoding,
"init_type" : init_type,
"use_macaron_style_in_conformer" : use_macaron_style_in_conformer,
"use_cnn_in_conformer" : use_cnn_in_conformer,
"encoder_layers" : encoder_layers,
"encoder_units" : encoder_units,
"encoder_normalize_before" : encoder_normalize_before,
"encoder_concat_after" : encoder_concat_after,
"conformer_encoder_kernel_size" : conformer_encoder_kernel_size,
"transformer_enc_dropout_rate" : transformer_enc_dropout_rate,
"transformer_enc_positional_dropout_rate" : transformer_enc_positional_dropout_rate,
"transformer_enc_attn_dropout_rate" : transformer_enc_attn_dropout_rate,
"decoder_layers" : decoder_layers,
"decoder_units" : decoder_units,
"decoder_concat_after" : decoder_concat_after,
"conformer_decoder_kernel_size" : conformer_decoder_kernel_size,
"decoder_normalize_before" : decoder_normalize_before,
"transformer_dec_dropout_rate" : transformer_dec_dropout_rate,
"transformer_dec_positional_dropout_rate" : transformer_dec_positional_dropout_rate,
"transformer_dec_attn_dropout_rate" : transformer_dec_attn_dropout_rate,
"duration_predictor_layers" : duration_predictor_layers,
"duration_predictor_kernel_size" : duration_predictor_kernel_size,
"duration_predictor_dropout_rate" : duration_predictor_dropout_rate,
"pitch_predictor_layers" : pitch_predictor_layers,
"pitch_predictor_kernel_size" : pitch_predictor_kernel_size,
"pitch_predictor_dropout" : pitch_predictor_dropout,
"pitch_embed_kernel_size" : pitch_embed_kernel_size,
"pitch_embed_dropout" : pitch_embed_dropout,
"energy_predictor_layers" : energy_predictor_layers,
"energy_predictor_kernel_size" : energy_predictor_kernel_size,
"energy_predictor_dropout" : energy_predictor_dropout,
"energy_embed_kernel_size" : energy_embed_kernel_size,
"energy_embed_dropout" : energy_embed_dropout,
"spec_channels" : spec_channels,
"cfm_filter_channels" : cfm_filter_channels,
"prosody_channels" : prosody_channels,
"cfm_heads" : cfm_heads,
"cfm_layers" : cfm_layers,
"cfm_kernel_size" : cfm_kernel_size,
"cfm_p_dropout" : cfm_p_dropout,
"utt_embed_dim" : utt_embed_dim,
"lang_embs" : lang_embs,
"lang_emb_size" : lang_emb_size,
"embedding_integration" : embedding_integration,
"integrate_language_embedding_into_encoder_out": integrate_language_embedding_into_encoder_out
}
self.input_feature_dimensions = input_feature_dimensions
self.attention_dimension = attention_dimension
self.use_scaled_pos_enc = use_scaled_positional_encoding
self.multilingual_model = lang_embs is not None
self.multispeaker_model = utt_embed_dim is not None
self.integrate_language_embedding_into_encoder_out = integrate_language_embedding_into_encoder_out
self.use_conditional_layernorm_embedding_integration = embedding_integration in ["AdaIN", "ConditionalLayerNorm"]
articulatory_feature_embedding = Sequential(Linear(input_feature_dimensions, 100), Tanh(), Linear(100, attention_dimension))
self.encoder = Conformer(conformer_type="encoder",
attention_dim=attention_dimension,
attention_heads=attention_heads,
linear_units=encoder_units,
num_blocks=encoder_layers,
input_layer=articulatory_feature_embedding,
dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate,
normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
use_cnn_module=True,
cnn_module_kernel=conformer_encoder_kernel_size,
zero_triu=False,
utt_embed=utt_embed_dim,
lang_embs=lang_embs,
lang_emb_size=lang_emb_size,
use_output_norm=True,
embedding_integration=embedding_integration)
if self.integrate_language_embedding_into_encoder_out:
if embedding_integration == "AdaIN":
self.language_embedding_infusion = AdaIN1d(style_dim=lang_emb_size, num_features=attention_dimension)
elif embedding_integration == "ConditionalLayerNorm":
self.language_embedding_infusion = ConditionalLayerNorm(speaker_embedding_dim=lang_emb_size, hidden_dim=attention_dimension)
else:
self.language_embedding_infusion = torch.nn.Linear(attention_dimension + lang_emb_size, attention_dimension)
self.pitch_embed = Sequential(torch.nn.Conv1d(in_channels=1,
out_channels=attention_dimension,
kernel_size=pitch_embed_kernel_size,
padding=(pitch_embed_kernel_size - 1) // 2),
torch.nn.Dropout(pitch_embed_dropout))
self.energy_embed = Sequential(torch.nn.Conv1d(in_channels=1, out_channels=attention_dimension, kernel_size=energy_embed_kernel_size,
padding=(energy_embed_kernel_size - 1) // 2),
torch.nn.Dropout(energy_embed_dropout))
self.length_regulator = LengthRegulator()
self.decoder = Conformer(conformer_type="decoder",
attention_dim=attention_dimension,
attention_heads=attention_heads,
linear_units=decoder_units,
num_blocks=decoder_layers,
input_layer=None,
dropout_rate=transformer_dec_dropout_rate,
positional_dropout_rate=transformer_dec_positional_dropout_rate,
attention_dropout_rate=transformer_dec_attn_dropout_rate,
normalize_before=decoder_normalize_before,
concat_after=decoder_concat_after,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
use_cnn_module=use_cnn_in_conformer,
cnn_module_kernel=conformer_decoder_kernel_size,
use_output_norm=embedding_integration not in ["AdaIN", "ConditionalLayerNorm"],
utt_embed=utt_embed_dim,
embedding_integration=embedding_integration)
self.output_projection = torch.nn.Linear(attention_dimension, spec_channels)
self.cfm_projection = torch.nn.Linear(attention_dimension, spec_channels)
self.pitch_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels)
self.energy_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels)
self.duration_latent_reduction = torch.nn.Linear(attention_dimension, prosody_channels)
# initialize parameters
self._reset_parameters(init_type=init_type)
if lang_embs is not None:
torch.nn.init.normal_(self.encoder.language_embedding.weight, mean=0, std=attention_dimension ** -0.5)
# the following modules have their own init function, so they come AFTER the init.
self.duration_predictor = CFMDecoder(hidden_channels=prosody_channels,
out_channels=1,
filter_channels=prosody_channels,
n_heads=1,
n_layers=duration_predictor_layers,
kernel_size=duration_predictor_kernel_size,
p_dropout=duration_predictor_dropout_rate,
gin_channels=utt_embed_dim)
self.pitch_predictor = CFMDecoder(hidden_channels=prosody_channels,
out_channels=1,
filter_channels=prosody_channels,
n_heads=1,
n_layers=pitch_predictor_layers,
kernel_size=pitch_predictor_kernel_size,
p_dropout=pitch_predictor_dropout,
gin_channels=utt_embed_dim)
self.energy_predictor = CFMDecoder(hidden_channels=prosody_channels,
out_channels=1,
filter_channels=prosody_channels,
n_heads=1,
n_layers=energy_predictor_layers,
kernel_size=energy_predictor_kernel_size,
p_dropout=energy_predictor_dropout,
gin_channels=utt_embed_dim)
self.flow_matching_decoder = CFMDecoder(hidden_channels=spec_channels,
out_channels=spec_channels,
filter_channels=cfm_filter_channels,
n_heads=cfm_heads,
n_layers=cfm_layers,
kernel_size=cfm_kernel_size,
p_dropout=cfm_p_dropout,
gin_channels=utt_embed_dim)
self.criterion = StochasticToucanTTSLoss()
def forward(self,
text_tensors,
text_lengths,
gold_speech,
speech_lengths,
gold_durations,
gold_pitch,
gold_energy,
utterance_embedding,
return_feats=False,
lang_ids=None,
run_stochastic=True
):
"""
Args:
return_feats (Boolean): whether to return the predicted spectrogram
text_tensors (LongTensor): Batch of padded text vectors (B, Tmax).
text_lengths (LongTensor): Batch of lengths of each input (B,).
gold_speech (Tensor): Batch of padded target features (B, Lmax, odim).
speech_lengths (LongTensor): Batch of the lengths of each target (B,).
gold_durations (LongTensor): Batch of padded durations (B, Tmax + 1).
gold_pitch (Tensor): Batch of padded token-averaged pitch (B, Tmax + 1, 1).
gold_energy (Tensor): Batch of padded token-averaged energy (B, Tmax + 1, 1).
lang_ids (LongTensor): The language IDs used to access the language embedding table, if the model is multilingual
utterance_embedding (Tensor): Batch of embeddings to condition the TTS on, if the model is multispeaker
run_stochastic (Bool): Whether to detach the inputs to the normalizing flow for stability.
"""
outs, \
stochastic_loss, \
duration_loss, \
pitch_loss, \
energy_loss = self._forward(text_tensors=text_tensors,
text_lengths=text_lengths,
gold_speech=gold_speech,
speech_lengths=speech_lengths,
gold_durations=gold_durations,
gold_pitch=gold_pitch,
gold_energy=gold_energy,
utterance_embedding=utterance_embedding,
is_inference=False,
lang_ids=lang_ids,
run_stochastic=run_stochastic)
# calculate loss
regression_loss = self.criterion(predicted_features=outs,
gold_features=gold_speech,
features_lengths=speech_lengths)
if return_feats:
return regression_loss, stochastic_loss, duration_loss, pitch_loss, energy_loss, outs
return regression_loss, stochastic_loss, duration_loss, pitch_loss, energy_loss
def _forward(self,
text_tensors,
text_lengths,
gold_speech=None,
speech_lengths=None,
gold_durations=None,
gold_pitch=None,
gold_energy=None,
is_inference=False,
utterance_embedding=None,
lang_ids=None,
run_stochastic=False):
text_tensors = torch.clamp(text_tensors, max=1.0)
# this is necessary, because of the way we represent modifiers to keep them identifiable.
if not self.multilingual_model:
lang_ids = None
if not self.multispeaker_model:
utterance_embedding = None
# encoding the texts
text_masks = make_non_pad_mask(text_lengths, device=text_lengths.device).unsqueeze(-2)
encoded_texts, _ = self.encoder(text_tensors, text_masks, utterance_embedding=utterance_embedding, lang_ids=lang_ids)
if self.integrate_language_embedding_into_encoder_out:
lang_embs = self.encoder.language_embedding(lang_ids).squeeze(-1)
encoded_texts = integrate_with_utt_embed(hs=encoded_texts, utt_embeddings=lang_embs, projection=self.language_embedding_infusion, embedding_training=self.use_conditional_layernorm_embedding_integration)
if is_inference:
# predicting pitch, energy and durations
reduced_pitch_space = torchfunc.dropout(self.pitch_latent_reduction(encoded_texts), p=0.1).transpose(1, 2)
pitch_predictions = self.pitch_predictor(mu=reduced_pitch_space, mask=text_masks.float(), n_timesteps=10, temperature=1.0, c=utterance_embedding)
embedded_pitch_curve = self.pitch_embed(pitch_predictions).transpose(1, 2)
reduced_energy_space = torchfunc.dropout(self.energy_latent_reduction(encoded_texts + embedded_pitch_curve), p=0.1).transpose(1, 2)
energy_predictions = self.energy_predictor(mu=reduced_energy_space, mask=text_masks.float(), n_timesteps=10, temperature=1.0, c=utterance_embedding)
embedded_energy_curve = self.energy_embed(energy_predictions).transpose(1, 2)
reduced_duration_space = torchfunc.dropout(self.duration_latent_reduction(encoded_texts + embedded_pitch_curve + embedded_energy_curve), p=0.1).transpose(1, 2)
predicted_durations = self.duration_predictor(mu=reduced_duration_space, mask=text_masks.float(), n_timesteps=10, temperature=1.0, c=utterance_embedding)
predicted_durations = torch.clamp(torch.ceil(predicted_durations), min=0.0).long().squeeze(1)
# modifying the predictions
for phoneme_index, phoneme_vector in enumerate(text_tensors.squeeze(0)):
if phoneme_vector[get_feature_to_index_lookup()["word-boundary"]] == 1:
predicted_durations[0][phoneme_index] = 0
# enriching the text with pitch and energy info
enriched_encoded_texts = encoded_texts + embedded_pitch_curve + embedded_energy_curve
# predicting durations for text and upsampling accordingly
upsampled_enriched_encoded_texts = self.length_regulator(enriched_encoded_texts, predicted_durations)
else:
# training with teacher forcing
reduced_pitch_space = torchfunc.dropout(self.pitch_latent_reduction(encoded_texts), p=0.1).transpose(1, 2)
pitch_loss, _ = self.pitch_predictor.compute_loss(mu=reduced_pitch_space,
x1=gold_pitch.transpose(1, 2),
mask=text_masks.float(),
c=utterance_embedding)
embedded_pitch_curve = self.pitch_embed(gold_pitch.transpose(1, 2)).transpose(1, 2)
reduced_energy_space = torchfunc.dropout(self.energy_latent_reduction(encoded_texts + embedded_pitch_curve), p=0.1).transpose(1, 2)
energy_loss, _ = self.energy_predictor.compute_loss(mu=reduced_energy_space,
x1=gold_energy.transpose(1, 2),
mask=text_masks.float(),
c=utterance_embedding)
embedded_energy_curve = self.energy_embed(gold_energy.transpose(1, 2)).transpose(1, 2)
reduced_duration_space = torchfunc.dropout(self.duration_latent_reduction(encoded_texts + embedded_pitch_curve + embedded_energy_curve), p=0.1).transpose(1, 2)
duration_loss, _ = self.duration_predictor.compute_loss(mu=reduced_duration_space,
x1=gold_durations.unsqueeze(-1).transpose(1, 2).float(),
mask=text_masks.float(),
c=utterance_embedding)
enriched_encoded_texts = encoded_texts + embedded_energy_curve + embedded_pitch_curve
upsampled_enriched_encoded_texts = self.length_regulator(enriched_encoded_texts, gold_durations)
# decoding spectrogram
decoder_masks = make_non_pad_mask(speech_lengths, device=speech_lengths.device).unsqueeze(-2) if speech_lengths is not None and not is_inference else None
decoded_speech, _ = self.decoder(upsampled_enriched_encoded_texts, decoder_masks, utterance_embedding=utterance_embedding)
preliminary_spectrogram = self.output_projection(decoded_speech)
if is_inference:
if run_stochastic:
refined_codec_frames = self.flow_matching_decoder(mu=self.cfm_projection(decoded_speech).transpose(1, 2),
mask=make_non_pad_mask([len(decoded_speech[0])], device=decoded_speech.device).unsqueeze(-2).float(),
n_timesteps=15,
temperature=0.2,
c=utterance_embedding).transpose(1, 2)
else:
refined_codec_frames = preliminary_spectrogram
return refined_codec_frames, \
predicted_durations.squeeze(), \
pitch_predictions.squeeze(), \
energy_predictions.squeeze()
else:
if run_stochastic:
stochastic_loss, _ = self.flow_matching_decoder.compute_loss(x1=gold_speech.transpose(1, 2),
mask=decoder_masks.float(),
mu=self.cfm_projection(decoded_speech).transpose(1, 2),
c=utterance_embedding)
else:
stochastic_loss = None
return preliminary_spectrogram, \
stochastic_loss, \
duration_loss, \
pitch_loss, \
energy_loss
@torch.inference_mode()
def inference(self,
text,
speech=None,
utterance_embedding=None,
return_duration_pitch_energy=False,
lang_id=None,
run_stochastic=True):
"""
Args:
text (LongTensor): Input sequence of characters (T,).
speech (Tensor, optional): Feature sequence to extract style (N, idim).
return_duration_pitch_energy (Boolean): whether to return the list of predicted durations for nicer plotting
lang_id (LongTensor): The language ID used to access the language embedding table, if the model is multilingual
utterance_embedding (Tensor): Embedding to condition the TTS on, if the model is multispeaker
run_stochastic (bool): whether to use the output of the stochastic or of the out_projection to generate codec frames
"""
self.eval()
# setup batch axis
ilens = torch.tensor([text.shape[0]], dtype=torch.long, device=text.device)
text_pseudobatched, speech_pseudobatched = text.unsqueeze(0), None
if speech is not None:
speech_pseudobatched = speech.unsqueeze(0)
utterance_embeddings = utterance_embedding.unsqueeze(0) if utterance_embedding is not None else None
outs, \
duration_predictions, \
pitch_predictions, \
energy_predictions = self._forward(text_pseudobatched,
ilens,
speech_pseudobatched,
is_inference=True,
utterance_embedding=utterance_embeddings,
lang_ids=lang_id,
run_stochastic=run_stochastic) # (1, L, odim)
self.train()
if return_duration_pitch_energy:
return outs.squeeze().transpose(0, 1), duration_predictions, pitch_predictions, energy_predictions
return outs.squeeze().transpose(0, 1)
def _reset_parameters(self, init_type="xavier_uniform"):
# initialize parameters
if init_type != "pytorch":
initialize(self, init_type)
def reset_postnet(self, init_type="xavier_uniform"):
# useful for after they explode
initialize(self.flow_matching_decoder, init_type)
if __name__ == '__main__':
model = ToucanTTS()
print(sum(p.numel() for p in model.parameters() if p.requires_grad))
print(" TESTING TRAINING ")
dummy_text_batch = torch.randint(low=0, high=2, size=[3, 3, 64]).float() # [Batch, Sequence Length, Features per Phone]
dummy_text_lens = torch.LongTensor([2, 3, 3])
dummy_speech_batch = torch.randn([3, 30, 128]) # [Batch, Sequence Length, Spectrogram Buckets]
dummy_speech_lens = torch.LongTensor([10, 30, 20])
dummy_durations = torch.LongTensor([[10, 0, 0], [10, 15, 5], [5, 5, 10]])
dummy_pitch = torch.Tensor([[[1.0], [0.], [0.]], [[1.1], [1.2], [0.8]], [[1.1], [1.2], [0.8]]])
dummy_energy = torch.Tensor([[[1.0], [1.3], [0.]], [[1.1], [1.4], [0.8]], [[1.1], [1.2], [0.8]]])
dummy_utterance_embed = torch.randn([3, 192]) # [Batch, Dimensions of Speaker Embedding]
dummy_language_id = torch.LongTensor([5, 3, 2])
ce, fl, dl, pl, el = model(dummy_text_batch,
dummy_text_lens,
dummy_speech_batch,
dummy_speech_lens,
dummy_durations,
dummy_pitch,
dummy_energy,
utterance_embedding=dummy_utterance_embed,
lang_ids=dummy_language_id)
loss = ce + dl + pl + el + fl
print(loss)
loss.backward()
print(" TESTING INFERENCE ")
dummy_text_batch = torch.randint(low=0, high=2, size=[12, 64]).float() # [Sequence Length, Features per Phone]
dummy_utterance_embed = torch.randn([192]) # [Dimensions of Speaker Embedding]
dummy_language_id = torch.LongTensor([2])
print(model.inference(dummy_text_batch,
utterance_embedding=dummy_utterance_embed,
lang_id=dummy_language_id).shape)
|