Spaces:
Running
on
Zero
Running
on
Zero
import json | |
import os | |
import pickle | |
import random | |
import kan | |
import matplotlib.pyplot as plt | |
import torch | |
from tqdm import tqdm | |
from Architectures.ToucanTTS.InferenceToucanTTS import ToucanTTS | |
from Utility.utils import load_json_from_path | |
class MetricsCombiner(torch.nn.Module): | |
def __init__(self, m): | |
super().__init__() | |
self.scoring_function = kan.KAN(width=[3, 5, 1], grid=5, k=5, seed=m) | |
def forward(self, x): | |
return self.scoring_function(x.squeeze()) | |
class EnsembleModel(torch.nn.Module): | |
def __init__(self, models): | |
super().__init__() | |
self.models = models | |
def forward(self, x): | |
distances = list() | |
for model in self.models: | |
distances.append(model(x)) | |
return sum(distances) / len(distances) | |
def create_learned_cache(model_path, cache_root="."): | |
checkpoint = torch.load(model_path, map_location='cpu') | |
embedding_provider = ToucanTTS(weights=checkpoint["model"], config=checkpoint["config"]).encoder.language_embedding | |
embedding_provider.requires_grad_(False) | |
language_list = load_json_from_path(os.path.join(cache_root, "supervised_languages.json")) | |
tree_lookup_path = os.path.join(cache_root, "lang_1_to_lang_2_to_tree_dist.json") | |
map_lookup_path = os.path.join(cache_root, "lang_1_to_lang_2_to_map_dist.json") | |
asp_dict_path = os.path.join(cache_root, "asp_dict.pkl") | |
if not os.path.exists(tree_lookup_path) or not os.path.exists(map_lookup_path): | |
raise FileNotFoundError("Please ensure the caches exist!") | |
if not os.path.exists(asp_dict_path): | |
raise FileNotFoundError(f"{asp_dict_path} must be downloaded separately.") | |
tree_dist = load_json_from_path(tree_lookup_path) | |
map_dist = load_json_from_path(map_lookup_path) | |
with open(asp_dict_path, 'rb') as dictfile: | |
asp_sim = pickle.load(dictfile) | |
lang_list = list(asp_sim.keys()) | |
largest_value_map_dist = 0.0 | |
for _, values in map_dist.items(): | |
for _, value in values.items(): | |
largest_value_map_dist = max(largest_value_map_dist, value) | |
iso_codes_to_ids = load_json_from_path(os.path.join(cache_root, "iso_lookup.json"))[-1] | |
train_set = language_list | |
batch_size = 128 | |
model_list = list() | |
print_intermediate_results = False | |
# ensemble preparation | |
n_models = 5 | |
print(f"Training ensemble of {n_models} models for learned distance metric.") | |
for m in range(n_models): | |
model_list.append(MetricsCombiner(m)) | |
optim = torch.optim.Adam(model_list[-1].parameters(), lr=0.0005) | |
running_loss = list() | |
for epoch in tqdm(range(35), desc=f"MetricsCombiner {m + 1}/{n_models} - Epoch"): | |
for i in range(1000): | |
# we have no dataloader, so first we build a batch | |
embedding_distance_batch = list() | |
metric_distance_batch = list() | |
for _ in range(batch_size): | |
lang_1 = random.sample(train_set, 1)[0] | |
lang_2 = random.sample(train_set, 1)[0] | |
embedding_distance_batch.append(torch.nn.functional.mse_loss(embedding_provider(torch.LongTensor([iso_codes_to_ids[lang_1]])).squeeze(), embedding_provider(torch.LongTensor([iso_codes_to_ids[lang_2]])).squeeze())) | |
try: | |
_tree_dist = tree_dist[lang_2][lang_1] | |
except KeyError: | |
_tree_dist = tree_dist[lang_1][lang_2] | |
try: | |
_map_dist = map_dist[lang_2][lang_1] / largest_value_map_dist | |
except KeyError: | |
_map_dist = map_dist[lang_1][lang_2] / largest_value_map_dist | |
_asp_dist = 1.0 - asp_sim[lang_1][lang_list.index(lang_2)] | |
metric_distance_batch.append(torch.tensor([_tree_dist, _map_dist, _asp_dist], dtype=torch.float32)) | |
# ok now we have a batch prepared. Time to feed it to the model. | |
scores = model_list[-1](torch.stack(metric_distance_batch).squeeze()) | |
if print_intermediate_results: | |
print("==================================") | |
print(scores.detach().squeeze()[:9]) | |
print(torch.stack(embedding_distance_batch).squeeze()[:9]) | |
loss = torch.nn.functional.mse_loss(scores.squeeze(), torch.stack(embedding_distance_batch).squeeze(), reduction="none") | |
loss = loss / (torch.stack(embedding_distance_batch).squeeze() + 0.0001) | |
loss = loss.mean() | |
running_loss.append(loss.item()) | |
optim.zero_grad() | |
loss.backward() | |
optim.step() | |
print("\n\n") | |
print(sum(running_loss) / len(running_loss)) | |
print("\n\n") | |
running_loss = list() | |
model_list[-1].scoring_function.plot(folder=f"kan_vis_{m}", beta=5000) | |
plt.show() | |
# Time to see if the final ensemble is any good | |
ensemble = EnsembleModel(model_list) | |
running_loss = list() | |
for i in range(100): | |
# we have no dataloader, so first we build a batch | |
embedding_distance_batch = list() | |
metric_distance_batch = list() | |
for _ in range(batch_size): | |
lang_1 = random.sample(train_set, 1)[0] | |
lang_2 = random.sample(train_set, 1)[0] | |
embedding_distance_batch.append(torch.nn.functional.mse_loss(embedding_provider(torch.LongTensor([iso_codes_to_ids[lang_1]])).squeeze(), embedding_provider(torch.LongTensor([iso_codes_to_ids[lang_2]])).squeeze())) | |
try: | |
_tree_dist = tree_dist[lang_2][lang_1] | |
except KeyError: | |
_tree_dist = tree_dist[lang_1][lang_2] | |
try: | |
_map_dist = map_dist[lang_2][lang_1] / largest_value_map_dist | |
except KeyError: | |
_map_dist = map_dist[lang_1][lang_2] / largest_value_map_dist | |
_asp_dist = 1.0 - asp_sim[lang_1][lang_list.index(lang_2)] | |
metric_distance_batch.append(torch.tensor([_tree_dist, _map_dist, _asp_dist], dtype=torch.float32)) | |
scores = ensemble(torch.stack(metric_distance_batch).squeeze()) | |
print("==================================") | |
print(scores.detach().squeeze()[:9]) | |
print(torch.stack(embedding_distance_batch).squeeze()[:9]) | |
loss = torch.nn.functional.mse_loss(scores.squeeze(), torch.stack(embedding_distance_batch).squeeze()) | |
running_loss.append(loss.item()) | |
print("\n\n") | |
print(sum(running_loss) / len(running_loss)) | |
language_to_language_to_learned_distance = dict() | |
for lang_1 in tqdm(tree_dist): | |
for lang_2 in tree_dist: | |
try: | |
if lang_2 in language_to_language_to_learned_distance: | |
if lang_1 in language_to_language_to_learned_distance[lang_2]: | |
continue # it's symmetric | |
if lang_1 not in language_to_language_to_learned_distance: | |
language_to_language_to_learned_distance[lang_1] = dict() | |
try: | |
_tree_dist = tree_dist[lang_2][lang_1] | |
except KeyError: | |
_tree_dist = tree_dist[lang_1][lang_2] | |
try: | |
_map_dist = map_dist[lang_2][lang_1] / largest_value_map_dist | |
except KeyError: | |
_map_dist = map_dist[lang_1][lang_2] / largest_value_map_dist | |
_asp_dist = 1.0 - asp_sim[lang_1][lang_list.index(lang_2)] | |
metric_distance = torch.tensor([_tree_dist, _map_dist, _asp_dist], dtype=torch.float32) | |
with torch.inference_mode(): | |
predicted_distance = ensemble(metric_distance) | |
language_to_language_to_learned_distance[lang_1][lang_2] = predicted_distance.item() | |
except ValueError: | |
continue | |
except KeyError: | |
continue | |
with open(os.path.join(cache_root, 'lang_1_to_lang_2_to_learned_dist.json'), 'w', encoding='utf-8') as f: | |
json.dump(language_to_language_to_learned_distance, f, ensure_ascii=False, indent=4) | |
if __name__ == '__main__': | |
create_learned_cache("../../Models/ToucanTTS_Meta/best.pt") | |