File size: 8,313 Bytes
6faeba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import json
import os
import pickle
import random

import kan
import matplotlib.pyplot as plt
import torch
from tqdm import tqdm

from Architectures.ToucanTTS.InferenceToucanTTS import ToucanTTS
from Utility.utils import load_json_from_path


class MetricsCombiner(torch.nn.Module):
    def __init__(self, m):
        super().__init__()
        self.scoring_function = kan.KAN(width=[3, 5, 1], grid=5, k=5, seed=m)

    def forward(self, x):
        return self.scoring_function(x.squeeze())


class EnsembleModel(torch.nn.Module):
    def __init__(self, models):
        super().__init__()
        self.models = models

    def forward(self, x):
        distances = list()
        for model in self.models:
            distances.append(model(x))
        return sum(distances) / len(distances)


def create_learned_cache(model_path, cache_root="."):
    checkpoint = torch.load(model_path, map_location='cpu')
    embedding_provider = ToucanTTS(weights=checkpoint["model"], config=checkpoint["config"]).encoder.language_embedding
    embedding_provider.requires_grad_(False)
    language_list = load_json_from_path(os.path.join(cache_root, "supervised_languages.json"))
    tree_lookup_path = os.path.join(cache_root, "lang_1_to_lang_2_to_tree_dist.json")
    map_lookup_path = os.path.join(cache_root, "lang_1_to_lang_2_to_map_dist.json")
    asp_dict_path = os.path.join(cache_root, "asp_dict.pkl")
    if not os.path.exists(tree_lookup_path) or not os.path.exists(map_lookup_path):
        raise FileNotFoundError("Please ensure the caches exist!")
    if not os.path.exists(asp_dict_path):
        raise FileNotFoundError(f"{asp_dict_path} must be downloaded separately.")
    tree_dist = load_json_from_path(tree_lookup_path)
    map_dist = load_json_from_path(map_lookup_path)
    with open(asp_dict_path, 'rb') as dictfile:
        asp_sim = pickle.load(dictfile)
    lang_list = list(asp_sim.keys())
    largest_value_map_dist = 0.0
    for _, values in map_dist.items():
        for _, value in values.items():
            largest_value_map_dist = max(largest_value_map_dist, value)
    iso_codes_to_ids = load_json_from_path(os.path.join(cache_root, "iso_lookup.json"))[-1]
    train_set = language_list
    batch_size = 128
    model_list = list()
    print_intermediate_results = False

    # ensemble preparation
    n_models = 5
    print(f"Training ensemble of {n_models} models for learned distance metric.")
    for m in range(n_models):
        model_list.append(MetricsCombiner(m))
        optim = torch.optim.Adam(model_list[-1].parameters(), lr=0.0005)
        running_loss = list()
        for epoch in tqdm(range(35), desc=f"MetricsCombiner {m + 1}/{n_models} - Epoch"):
            for i in range(1000):
                # we have no dataloader, so first we build a batch
                embedding_distance_batch = list()
                metric_distance_batch = list()
                for _ in range(batch_size):
                    lang_1 = random.sample(train_set, 1)[0]
                    lang_2 = random.sample(train_set, 1)[0]
                    embedding_distance_batch.append(torch.nn.functional.mse_loss(embedding_provider(torch.LongTensor([iso_codes_to_ids[lang_1]])).squeeze(), embedding_provider(torch.LongTensor([iso_codes_to_ids[lang_2]])).squeeze()))
                    try:
                        _tree_dist = tree_dist[lang_2][lang_1]
                    except KeyError:
                        _tree_dist = tree_dist[lang_1][lang_2]
                    try:
                        _map_dist = map_dist[lang_2][lang_1] / largest_value_map_dist
                    except KeyError:
                        _map_dist = map_dist[lang_1][lang_2] / largest_value_map_dist
                    _asp_dist = 1.0 - asp_sim[lang_1][lang_list.index(lang_2)]
                    metric_distance_batch.append(torch.tensor([_tree_dist, _map_dist, _asp_dist], dtype=torch.float32))

                # ok now we have a batch prepared. Time to feed it to the model.
                scores = model_list[-1](torch.stack(metric_distance_batch).squeeze())
                if print_intermediate_results:
                    print("==================================")
                    print(scores.detach().squeeze()[:9])
                    print(torch.stack(embedding_distance_batch).squeeze()[:9])
                loss = torch.nn.functional.mse_loss(scores.squeeze(), torch.stack(embedding_distance_batch).squeeze(), reduction="none")
                loss = loss / (torch.stack(embedding_distance_batch).squeeze() + 0.0001)
                loss = loss.mean()

                running_loss.append(loss.item())
                optim.zero_grad()
                loss.backward()
                optim.step()

            print("\n\n")
            print(sum(running_loss) / len(running_loss))
            print("\n\n")
            running_loss = list()

        model_list[-1].scoring_function.plot(folder=f"kan_vis_{m}", beta=5000)
        plt.show()

    # Time to see if the final ensemble is any good
    ensemble = EnsembleModel(model_list)

    running_loss = list()
    for i in range(100):
        # we have no dataloader, so first we build a batch
        embedding_distance_batch = list()
        metric_distance_batch = list()
        for _ in range(batch_size):
            lang_1 = random.sample(train_set, 1)[0]
            lang_2 = random.sample(train_set, 1)[0]
            embedding_distance_batch.append(torch.nn.functional.mse_loss(embedding_provider(torch.LongTensor([iso_codes_to_ids[lang_1]])).squeeze(), embedding_provider(torch.LongTensor([iso_codes_to_ids[lang_2]])).squeeze()))
            try:
                _tree_dist = tree_dist[lang_2][lang_1]
            except KeyError:
                _tree_dist = tree_dist[lang_1][lang_2]
            try:
                _map_dist = map_dist[lang_2][lang_1] / largest_value_map_dist
            except KeyError:
                _map_dist = map_dist[lang_1][lang_2] / largest_value_map_dist
            _asp_dist = 1.0 - asp_sim[lang_1][lang_list.index(lang_2)]
            metric_distance_batch.append(torch.tensor([_tree_dist, _map_dist, _asp_dist], dtype=torch.float32))

        scores = ensemble(torch.stack(metric_distance_batch).squeeze())
        print("==================================")
        print(scores.detach().squeeze()[:9])
        print(torch.stack(embedding_distance_batch).squeeze()[:9])
        loss = torch.nn.functional.mse_loss(scores.squeeze(), torch.stack(embedding_distance_batch).squeeze())
        running_loss.append(loss.item())

    print("\n\n")
    print(sum(running_loss) / len(running_loss))

    language_to_language_to_learned_distance = dict()

    for lang_1 in tqdm(tree_dist):
        for lang_2 in tree_dist:
            try:
                if lang_2 in language_to_language_to_learned_distance:
                    if lang_1 in language_to_language_to_learned_distance[lang_2]:
                        continue  # it's symmetric
                if lang_1 not in language_to_language_to_learned_distance:
                    language_to_language_to_learned_distance[lang_1] = dict()
                try:
                    _tree_dist = tree_dist[lang_2][lang_1]
                except KeyError:
                    _tree_dist = tree_dist[lang_1][lang_2]
                try:
                    _map_dist = map_dist[lang_2][lang_1] / largest_value_map_dist
                except KeyError:
                    _map_dist = map_dist[lang_1][lang_2] / largest_value_map_dist
                _asp_dist = 1.0 - asp_sim[lang_1][lang_list.index(lang_2)]
                metric_distance = torch.tensor([_tree_dist, _map_dist, _asp_dist], dtype=torch.float32)
                with torch.inference_mode():
                    predicted_distance = ensemble(metric_distance)
                language_to_language_to_learned_distance[lang_1][lang_2] = predicted_distance.item()
            except ValueError:
                continue
            except KeyError:
                continue

    with open(os.path.join(cache_root, 'lang_1_to_lang_2_to_learned_dist.json'), 'w', encoding='utf-8') as f:
        json.dump(language_to_language_to_learned_distance, f, ensure_ascii=False, indent=4)


if __name__ == '__main__':
    create_learned_cache("../../Models/ToucanTTS_Meta/best.pt")