Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig | |
from PIL import Image | |
import torch | |
import spaces | |
# Load the processor and model | |
processor = AutoProcessor.from_pretrained( | |
'allenai/Molmo-7B-O-0924', | |
trust_remote_code=True, | |
torch_dtype='auto', | |
device_map='auto' | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
'allenai/Molmo-7B-O-0924', | |
trust_remote_code=True, | |
torch_dtype='auto', | |
device_map='auto' | |
) | |
def process_image_and_text(image, text): | |
# Process the image and text | |
inputs = processor.process( | |
images=[Image.fromarray(image)], | |
text=text | |
) | |
# Move inputs to the correct device and make a batch of size 1 | |
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} | |
# Generate output | |
output = model.generate_from_batch( | |
inputs, | |
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), | |
tokenizer=processor.tokenizer | |
) | |
# Only get generated tokens; decode them to text | |
generated_tokens = output[0, inputs['input_ids'].size(1):] | |
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
return generated_text | |
def chatbot(image, text, history): | |
if image is None: | |
return history + [("Please upload an image first.", None)] | |
response = process_image_and_text(image, text) | |
history.append((text, response)) | |
return history | |
# Define the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Image Chatbot with Molmo-7B-O-0924") | |
with gr.Row(): | |
image_input = gr.Image(type="numpy") | |
chatbot_output = gr.Chatbot() | |
text_input = gr.Textbox(placeholder="Ask a question about the image...") | |
submit_button = gr.Button("Submit") | |
state = gr.State([]) | |
submit_button.click( | |
chatbot, | |
inputs=[image_input, text_input, state], | |
outputs=[chatbot_output] | |
) | |
text_input.submit( | |
chatbot, | |
inputs=[image_input, text_input, state], | |
outputs=[chatbot_output] | |
) | |
demo.launch() |