File size: 2,138 Bytes
259d504
 
 
 
53afe5a
259d504
 
 
ef98b2f
259d504
 
 
 
 
 
ef98b2f
259d504
 
 
 
 
53afe5a
 
259d504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86f16e5
259d504
 
 
86f16e5
259d504
 
 
b5ad09e
259d504
 
 
 
 
 
 
 
 
 
 
 
 
86f16e5
259d504
 
 
 
 
86f16e5
259d504
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import gradio as gr
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
from PIL import Image
import torch
import spaces

# Load the processor and model
processor = AutoProcessor.from_pretrained(
    'allenai/Molmo-7B-O-0924',
    trust_remote_code=True,
    torch_dtype='auto',
    device_map='auto'
)

model = AutoModelForCausalLM.from_pretrained(
    'allenai/Molmo-7B-O-0924',
    trust_remote_code=True,
    torch_dtype='auto',
    device_map='auto'
)


@spaces.GPU(duration=120)
def process_image_and_text(image, text):
    # Process the image and text
    inputs = processor.process(
        images=[Image.fromarray(image)],
        text=text
    )

    # Move inputs to the correct device and make a batch of size 1
    inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}

    # Generate output
    output = model.generate_from_batch(
        inputs,
        GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
        tokenizer=processor.tokenizer
    )

    # Only get generated tokens; decode them to text
    generated_tokens = output[0, inputs['input_ids'].size(1):]
    generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)

    return generated_text

def chatbot(image, text, history):
    if image is None:
        return history + [("Please upload an image first.", None)]

    response = process_image_and_text(image, text)
    history.append((text, response))
    return history

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Image Chatbot with Molmo-7B-O-0924")
    
    with gr.Row():
        image_input = gr.Image(type="numpy")
        chatbot_output = gr.Chatbot()
    
    text_input = gr.Textbox(placeholder="Ask a question about the image...")
    submit_button = gr.Button("Submit")

    state = gr.State([])

    submit_button.click(
        chatbot,
        inputs=[image_input, text_input, state],
        outputs=[chatbot_output]
    )

    text_input.submit(
        chatbot,
        inputs=[image_input, text_input, state],
        outputs=[chatbot_output]
    )

demo.launch()