Spaces:
Sleeping
Sleeping
File size: 1,861 Bytes
0042a34 32e36a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import numpy as np
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
from torchvision import models
import gradio as gr
# Define transformations (must be the same as those used during training)
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Load the model architecture and weights
model = models.resnet50(weights=None) # Initialize model without pretrained weights
model.fc = nn.Linear(model.fc.in_features, 4) # Adjust final layer for 4 classes
# Load the state dictionary with map_location for CPU
model.load_state_dict(torch.load("alzheimer_model_resnet50.pth", map_location=torch.device('cpu')))
model.eval() # Set model to evaluation mode
# Define class labels (must match the dataset used during training)
class_labels = ["Mild_Demented 0", "Moderate_Demented 1", "Non_Demented 2", "Very_Mild_Demented 3"] # Replace with your class names
# Define the prediction function
def predict(image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image.astype('uint8'), 'RGB')
else:
image = Image.open(image).convert("RGB")
image = transform(image).unsqueeze(0) # Add batch dimension
with torch.no_grad():
outputs = model(image)
_, predicted = torch.max(outputs.data, 1)
label = class_labels[predicted.item()]
return label
# Create a Gradio interface with examples
examples = [
["image1.jpg"],
["image2.jpg"],
["image3.jpg"]
]
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="numpy", label="Upload an MRI Image"),
outputs=gr.Textbox(label="Prediction"),
title="Alzheimer MRI Classification",
examples=examples
)
if __name__ == "__main__":
iface.launch() |