Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +57 -0
- image1.jpg +0 -0
- image2.jpg +0 -0
- image3.jpg +0 -0
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
from PIL import Image
|
6 |
+
from torchvision import models
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
# Define transformations (must be the same as those used during training)
|
10 |
+
transform = transforms.Compose([
|
11 |
+
transforms.Resize((224, 224)),
|
12 |
+
transforms.ToTensor(),
|
13 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
14 |
+
])
|
15 |
+
|
16 |
+
# Load the model architecture and weights
|
17 |
+
model = models.resnet50(weights=None) # Initialize model without pretrained weights
|
18 |
+
model.fc = nn.Linear(model.fc.in_features, 4) # Adjust final layer for 4 classes
|
19 |
+
|
20 |
+
# Load the state dictionary with map_location for CPU
|
21 |
+
model.load_state_dict(torch.load("alzheimer_model_resnet50.pth", map_location=torch.device('cpu')))
|
22 |
+
model.eval() # Set model to evaluation mode
|
23 |
+
|
24 |
+
# Define class labels (must match the dataset used during training)
|
25 |
+
class_labels = ["Mild_Demented 0", "Moderate_Demented 1", "Non_Demented 2", "Very_Mild_Demented 3"] # Replace with your class names
|
26 |
+
|
27 |
+
# Define the prediction function
|
28 |
+
def predict(image):
|
29 |
+
if isinstance(image, np.ndarray):
|
30 |
+
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
31 |
+
else:
|
32 |
+
image = Image.open(image).convert("RGB")
|
33 |
+
image = transform(image).unsqueeze(0) # Add batch dimension
|
34 |
+
|
35 |
+
with torch.no_grad():
|
36 |
+
outputs = model(image)
|
37 |
+
_, predicted = torch.max(outputs.data, 1)
|
38 |
+
label = class_labels[predicted.item()]
|
39 |
+
return label
|
40 |
+
|
41 |
+
# Create a Gradio interface with examples
|
42 |
+
examples = [
|
43 |
+
["0.jpg"],
|
44 |
+
["f1.jpg"],
|
45 |
+
["image.jpg"]
|
46 |
+
]
|
47 |
+
|
48 |
+
iface = gr.Interface(
|
49 |
+
fn=predict,
|
50 |
+
inputs=gr.Image(type="numpy", label="Upload an MRI Image"),
|
51 |
+
outputs=gr.Textbox(label="Prediction"),
|
52 |
+
title="Alzheimer MRI Classification",
|
53 |
+
examples=examples
|
54 |
+
)
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
iface.launch()
|
image1.jpg
ADDED
image2.jpg
ADDED
image3.jpg
ADDED