ErenKontas commited on
Commit
7e04eb0
·
verified ·
1 Parent(s): cadb7ff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -51
app.py CHANGED
@@ -1,52 +1,52 @@
1
- import pandas as pd
2
- import streamlit as st
3
- import joblib
4
-
5
- from sklearn.preprocessing import StandardScaler, OneHotEncoder
6
- from sklearn.model_selection import train_test_split
7
- from sklearn.compose import ColumnTransformer
8
-
9
- # Veriyi yükleme ve sütun isimlerini güncelleme
10
- df = pd.read_csv('train.csv')
11
-
12
- # Bağımlı ve bağımsız değişkenlerin seçimi
13
- x = df.drop(['essay_id', 'text'], axis=1)
14
- y = df[['text']]
15
-
16
- # Eğitim ve test verilerini ayırma
17
- x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42)
18
-
19
- # Ön işleme (StandardScaler ve OneHotEncoder)
20
- preprocessor = ColumnTransformer(
21
- transformers=[
22
- ('num', StandardScaler(), ['feeling']),
23
- ('cat', OneHotEncoder(), ['text'])
24
- ]
25
- )
26
-
27
- # Streamlit uygulaması
28
- def rings_pred(feeling, text):
29
- input_data = pd.DataFrame({
30
- 'text': [text],
31
- 'feeling': [feeling]
32
-
33
- })
34
-
35
-
36
- input_data_transformed = preprocessor.fit_transform(input_data)
37
-
38
- model = joblib.load('Tweet.pkl')
39
-
40
- prediction = model.predict(input_data_transformed)
41
- return float(prediction[0])
42
-
43
- st.title("Abalone Veri seti ile Yaş Tahmini Regresyon Modeli")
44
- st.write("Veri Gir")
45
-
46
- text = st.selectbox('text', df['text'].unique())
47
- feeling = st.selectbox('feeling', df['feeling'].unique())
48
-
49
-
50
- if st.button('Predict'):
51
- rings = rings_pred(text,feeling)
52
  st.write(f'The predicted rings is: {rings:.2f}')
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+ import joblib
4
+
5
+ from sklearn.preprocessing import StandardScaler, OneHotEncoder
6
+ from sklearn.model_selection import train_test_split
7
+ from sklearn.compose import ColumnTransformer
8
+
9
+ # Veriyi yükleme ve sütun isimlerini güncelleme
10
+ df = pd.read_csv('train.csv')
11
+ df=df.drop('essay_id', axis=1)
12
+ # Bağımlı ve bağımsız değişkenlerin seçimi
13
+ x = df.drop('text', axis=1)
14
+ y = df[['text']]
15
+
16
+ # Eğitim ve test verilerini ayırma
17
+ x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42)
18
+
19
+ # Ön işleme (StandardScaler ve OneHotEncoder)
20
+ preprocessor = ColumnTransformer(
21
+ transformers=[
22
+ ('num', StandardScaler(), ['feeling']),
23
+ ('cat', OneHotEncoder(), ['text'])
24
+ ]
25
+ )
26
+
27
+ # Streamlit uygulaması
28
+ def rings_pred(feeling, text):
29
+ input_data = pd.DataFrame({
30
+ 'text': [text],
31
+ 'feeling': [feeling]
32
+
33
+ })
34
+
35
+
36
+ input_data_transformed = preprocessor.fit_transform(input_data)
37
+
38
+ model = joblib.load('Tweet.pkl')
39
+
40
+ prediction = model.predict(input_data_transformed)
41
+ return float(prediction[0])
42
+
43
+ st.title("Abalone Veri seti ile Yaş Tahmini Regresyon Modeli")
44
+ st.write("Veri Gir")
45
+
46
+ text = st.selectbox('text', df['text'].unique())
47
+ feeling = st.selectbox('feeling', df['feeling'].unique())
48
+
49
+
50
+ if st.button('Predict'):
51
+ rings = rings_pred(text,feeling)
52
  st.write(f'The predicted rings is: {rings:.2f}')