Spaces:
Runtime error
Runtime error
"""Compute depth maps for images in the input folder. | |
""" | |
import os | |
import glob | |
import torch | |
# from monodepth_net import MonoDepthNet | |
# import utils | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import cv2 | |
import imageio | |
def run_depth(img_names, input_path, output_path, model_path, Net, utils, target_w=None): | |
"""Run MonoDepthNN to compute depth maps. | |
Args: | |
input_path (str): path to input folder | |
output_path (str): path to output folder | |
model_path (str): path to saved model | |
""" | |
print("initialize") | |
# select device | |
device = torch.device("cpu") | |
print("device: %s" % device) | |
# load network | |
model = Net(model_path) | |
model.to(device) | |
model.eval() | |
# get input | |
# img_names = glob.glob(os.path.join(input_path, "*")) | |
num_images = len(img_names) | |
# create output folder | |
os.makedirs(output_path, exist_ok=True) | |
print("start processing") | |
for ind, img_name in enumerate(img_names): | |
print(" processing {} ({}/{})".format(img_name, ind + 1, num_images)) | |
# input | |
img = utils.read_image(img_name) | |
w = img.shape[1] | |
scale = 640. / max(img.shape[0], img.shape[1]) | |
target_height, target_width = int(round(img.shape[0] * scale)), int(round(img.shape[1] * scale)) | |
img_input = utils.resize_image(img) | |
print(img_input.shape) | |
img_input = img_input.to(device) | |
# compute | |
with torch.no_grad(): | |
out = model.forward(img_input) | |
depth = utils.resize_depth(out, target_width, target_height) | |
img = cv2.resize((img * 255).astype(np.uint8), (target_width, target_height), interpolation=cv2.INTER_AREA) | |
filename = os.path.join( | |
output_path, os.path.splitext(os.path.basename(img_name))[0] | |
) | |
np.save(filename + '.npy', depth) | |
utils.write_depth(filename, depth, bits=2) | |
print("finished") | |
# if __name__ == "__main__": | |
# # set paths | |
# INPUT_PATH = "image" | |
# OUTPUT_PATH = "output" | |
# MODEL_PATH = "model.pt" | |
# # set torch options | |
# torch.backends.cudnn.enabled = True | |
# torch.backends.cudnn.benchmark = True | |
# # compute depth maps | |
# run_depth(INPUT_PATH, OUTPUT_PATH, MODEL_PATH, Net, target_w=640) | |