Spaces:
Runtime error
Runtime error
"""MonoDepthNet: Network for monocular depth estimation trained by mixing several datasets. | |
This file contains code that is adapted from | |
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py | |
""" | |
import torch | |
import torch.nn as nn | |
from torchvision import models | |
class MonoDepthNet(nn.Module): | |
"""Network for monocular depth estimation. | |
""" | |
def __init__(self, path=None, features=256): | |
"""Init. | |
Args: | |
path (str, optional): Path to saved model. Defaults to None. | |
features (int, optional): Number of features. Defaults to 256. | |
""" | |
super().__init__() | |
resnet = models.resnet50(pretrained=False) | |
self.pretrained = nn.Module() | |
self.scratch = nn.Module() | |
self.pretrained.layer1 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu, | |
resnet.maxpool, resnet.layer1) | |
self.pretrained.layer2 = resnet.layer2 | |
self.pretrained.layer3 = resnet.layer3 | |
self.pretrained.layer4 = resnet.layer4 | |
# adjust channel number of feature maps | |
self.scratch.layer1_rn = nn.Conv2d(256, features, kernel_size=3, stride=1, padding=1, bias=False) | |
self.scratch.layer2_rn = nn.Conv2d(512, features, kernel_size=3, stride=1, padding=1, bias=False) | |
self.scratch.layer3_rn = nn.Conv2d(1024, features, kernel_size=3, stride=1, padding=1, bias=False) | |
self.scratch.layer4_rn = nn.Conv2d(2048, features, kernel_size=3, stride=1, padding=1, bias=False) | |
self.scratch.refinenet4 = FeatureFusionBlock(features) | |
self.scratch.refinenet3 = FeatureFusionBlock(features) | |
self.scratch.refinenet2 = FeatureFusionBlock(features) | |
self.scratch.refinenet1 = FeatureFusionBlock(features) | |
# adaptive output module: 2 convolutions and upsampling | |
self.scratch.output_conv = nn.Sequential(nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1), | |
nn.Conv2d(128, 1, kernel_size=3, stride=1, padding=1), | |
Interpolate(scale_factor=2, mode='bilinear')) | |
# load model | |
if path: | |
self.load(path) | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input data (image) | |
Returns: | |
tensor: depth | |
""" | |
layer_1 = self.pretrained.layer1(x) | |
layer_2 = self.pretrained.layer2(layer_1) | |
layer_3 = self.pretrained.layer3(layer_2) | |
layer_4 = self.pretrained.layer4(layer_3) | |
layer_1_rn = self.scratch.layer1_rn(layer_1) | |
layer_2_rn = self.scratch.layer2_rn(layer_2) | |
layer_3_rn = self.scratch.layer3_rn(layer_3) | |
layer_4_rn = self.scratch.layer4_rn(layer_4) | |
path_4 = self.scratch.refinenet4(layer_4_rn) | |
path_3 = self.scratch.refinenet3(path_4, layer_3_rn) | |
path_2 = self.scratch.refinenet2(path_3, layer_2_rn) | |
path_1 = self.scratch.refinenet1(path_2, layer_1_rn) | |
out = self.scratch.output_conv(path_1) | |
return out | |
def load(self, path): | |
"""Load model from file. | |
Args: | |
path (str): file path | |
""" | |
parameters = torch.load(path) | |
self.load_state_dict(parameters) | |
class Interpolate(nn.Module): | |
"""Interpolation module. | |
""" | |
def __init__(self, scale_factor, mode): | |
"""Init. | |
Args: | |
scale_factor (float): scaling | |
mode (str): interpolation mode | |
""" | |
super(Interpolate, self).__init__() | |
self.interp = nn.functional.interpolate | |
self.scale_factor = scale_factor | |
self.mode = mode | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: interpolated data | |
""" | |
x = self.interp(x, scale_factor=self.scale_factor, mode=self.mode, align_corners=False) | |
return x | |
class ResidualConvUnit(nn.Module): | |
"""Residual convolution module. | |
""" | |
def __init__(self, features): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super().__init__() | |
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True) | |
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=False) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: output | |
""" | |
out = self.relu(x) | |
out = self.conv1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
return out + x | |
class FeatureFusionBlock(nn.Module): | |
"""Feature fusion block. | |
""" | |
def __init__(self, features): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super().__init__() | |
self.resConfUnit = ResidualConvUnit(features) | |
def forward(self, *xs): | |
"""Forward pass. | |
Returns: | |
tensor: output | |
""" | |
output = xs[0] | |
if len(xs) == 2: | |
output += self.resConfUnit(xs[1]) | |
output = self.resConfUnit(output) | |
output = nn.functional.interpolate(output, scale_factor=2, | |
mode='bilinear', align_corners=True) | |
return output | |