Spaces:
Runtime error
Runtime error
File size: 56,629 Bytes
0b9f920 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 |
import os
import numpy as np
try:
import cynetworkx as netx
except ImportError:
import networkx as netx
import json
import scipy.misc as misc
#import OpenEXR
import scipy.signal as signal
import matplotlib.pyplot as plt
import cv2
import scipy.misc as misc
from skimage import io
from functools import partial
from vispy import scene, io
from vispy.scene import visuals
from functools import reduce
# from moviepy.editor import ImageSequenceClip
import scipy.misc as misc
from vispy.visuals.filters import Alpha
import cv2
from skimage.transform import resize
import copy
import torch
import os
from utils import refine_depth_around_edge, smooth_cntsyn_gap
from utils import require_depth_edge, filter_irrelevant_edge_new, open_small_mask
from skimage.feature import canny
from scipy import ndimage
import time
import transforms3d
def relabel_node(mesh, nodes, cur_node, new_node):
if cur_node == new_node:
return mesh
mesh.add_node(new_node)
for key, value in nodes[cur_node].items():
nodes[new_node][key] = value
for ne in mesh.neighbors(cur_node):
mesh.add_edge(new_node, ne)
mesh.remove_node(cur_node)
return mesh
def filter_edge(mesh, edge_ccs, config, invalid=False):
context_ccs = [set() for _ in edge_ccs]
mesh_nodes = mesh.nodes
for edge_id, edge_cc in enumerate(edge_ccs):
if config['context_thickness'] == 0:
continue
edge_group = {}
for edge_node in edge_cc:
far_nodes = mesh_nodes[edge_node].get('far')
if far_nodes is None:
continue
for far_node in far_nodes:
context_ccs[edge_id].add(far_node)
if mesh_nodes[far_node].get('edge_id') is not None:
if edge_group.get(mesh_nodes[far_node]['edge_id']) is None:
edge_group[mesh_nodes[far_node]['edge_id']] = set()
edge_group[mesh_nodes[far_node]['edge_id']].add(far_node)
if len(edge_cc) > 2:
for edge_key in [*edge_group.keys()]:
if len(edge_group[edge_key]) == 1:
context_ccs[edge_id].remove([*edge_group[edge_key]][0])
valid_edge_ccs = []
for xidx, yy in enumerate(edge_ccs):
if invalid is not True and len(context_ccs[xidx]) > 0:
# if len(context_ccs[xidx]) > 0:
valid_edge_ccs.append(yy)
elif invalid is True and len(context_ccs[xidx]) == 0:
valid_edge_ccs.append(yy)
else:
valid_edge_ccs.append(set())
# valid_edge_ccs = [yy for xidx, yy in enumerate(edge_ccs) if len(context_ccs[xidx]) > 0]
return valid_edge_ccs
def extrapolate(global_mesh,
info_on_pix,
image,
depth,
other_edge_with_id,
edge_map,
edge_ccs,
depth_edge_model,
depth_feat_model,
rgb_feat_model,
config,
direc='right-up'):
h_off, w_off = global_mesh.graph['hoffset'], global_mesh.graph['woffset']
noext_H, noext_W = global_mesh.graph['noext_H'], global_mesh.graph['noext_W']
if "up" in direc.lower() and "-" not in direc.lower():
all_anchor = [0, h_off + config['context_thickness'], w_off, w_off + noext_W]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [0, h_off, w_off, w_off + noext_W]
context_anchor = [h_off, h_off + config['context_thickness'], w_off, w_off + noext_W]
valid_line_anchor = [h_off, h_off + 1, w_off, w_off + noext_W]
valid_anchor = [min(mask_anchor[0], context_anchor[0]), max(mask_anchor[1], context_anchor[1]),
min(mask_anchor[2], context_anchor[2]), max(mask_anchor[3], context_anchor[3])]
elif "down" in direc.lower() and "-" not in direc.lower():
all_anchor = [h_off + noext_H - config['context_thickness'], 2 * h_off + noext_H, w_off, w_off + noext_W]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [h_off + noext_H, 2 * h_off + noext_H, w_off, w_off + noext_W]
context_anchor = [h_off + noext_H - config['context_thickness'], h_off + noext_H, w_off, w_off + noext_W]
valid_line_anchor = [h_off + noext_H - 1, h_off + noext_H, w_off, w_off + noext_W]
valid_anchor = [min(mask_anchor[0], context_anchor[0]), max(mask_anchor[1], context_anchor[1]),
min(mask_anchor[2], context_anchor[2]), max(mask_anchor[3], context_anchor[3])]
elif "left" in direc.lower() and "-" not in direc.lower():
all_anchor = [h_off, h_off + noext_H, 0, w_off + config['context_thickness']]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [h_off, h_off + noext_H, 0, w_off]
context_anchor = [h_off, h_off + noext_H, w_off, w_off + config['context_thickness']]
valid_line_anchor = [h_off, h_off + noext_H, w_off, w_off + 1]
valid_anchor = [min(mask_anchor[0], context_anchor[0]), max(mask_anchor[1], context_anchor[1]),
min(mask_anchor[2], context_anchor[2]), max(mask_anchor[3], context_anchor[3])]
elif "right" in direc.lower() and "-" not in direc.lower():
all_anchor = [h_off, h_off + noext_H, w_off + noext_W - config['context_thickness'], 2 * w_off + noext_W]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [h_off, h_off + noext_H, w_off + noext_W, 2 * w_off + noext_W]
context_anchor = [h_off, h_off + noext_H, w_off + noext_W - config['context_thickness'], w_off + noext_W]
valid_line_anchor = [h_off, h_off + noext_H, w_off + noext_W - 1, w_off + noext_W]
valid_anchor = [min(mask_anchor[0], context_anchor[0]), max(mask_anchor[1], context_anchor[1]),
min(mask_anchor[2], context_anchor[2]), max(mask_anchor[3], context_anchor[3])]
elif "left" in direc.lower() and "up" in direc.lower() and "-" in direc.lower():
all_anchor = [0, h_off + config['context_thickness'], 0, w_off + config['context_thickness']]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [0, h_off, 0, w_off]
context_anchor = "inv-mask"
valid_line_anchor = None
valid_anchor = all_anchor
elif "left" in direc.lower() and "down" in direc.lower() and "-" in direc.lower():
all_anchor = [h_off + noext_H - config['context_thickness'], 2 * h_off + noext_H, 0, w_off + config['context_thickness']]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [h_off + noext_H, 2 * h_off + noext_H, 0, w_off]
context_anchor = "inv-mask"
valid_line_anchor = None
valid_anchor = all_anchor
elif "right" in direc.lower() and "up" in direc.lower() and "-" in direc.lower():
all_anchor = [0, h_off + config['context_thickness'], w_off + noext_W - config['context_thickness'], 2 * w_off + noext_W]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [0, h_off, w_off + noext_W, 2 * w_off + noext_W]
context_anchor = "inv-mask"
valid_line_anchor = None
valid_anchor = all_anchor
elif "right" in direc.lower() and "down" in direc.lower() and "-" in direc.lower():
all_anchor = [h_off + noext_H - config['context_thickness'], 2 * h_off + noext_H, w_off + noext_W - config['context_thickness'], 2 * w_off + noext_W]
global_shift = [all_anchor[0], all_anchor[2]]
mask_anchor = [h_off + noext_H, 2 * h_off + noext_H, w_off + noext_W, 2 * w_off + noext_W]
context_anchor = "inv-mask"
valid_line_anchor = None
valid_anchor = all_anchor
global_mask = np.zeros_like(depth)
global_mask[mask_anchor[0]:mask_anchor[1],mask_anchor[2]:mask_anchor[3]] = 1
mask = global_mask[valid_anchor[0]:valid_anchor[1], valid_anchor[2]:valid_anchor[3]] * 1
context = 1 - mask
global_context = np.zeros_like(depth)
global_context[all_anchor[0]:all_anchor[1],all_anchor[2]:all_anchor[3]] = context
# context = global_context[valid_anchor[0]:valid_anchor[1], valid_anchor[2]:valid_anchor[3]] * 1
valid_area = mask + context
input_rgb = image[valid_anchor[0]:valid_anchor[1], valid_anchor[2]:valid_anchor[3]] / 255. * context[..., None]
input_depth = depth[valid_anchor[0]:valid_anchor[1], valid_anchor[2]:valid_anchor[3]] * context
log_depth = np.log(input_depth + 1e-8)
log_depth[mask > 0] = 0
input_mean_depth = np.mean(log_depth[context > 0])
input_zero_mean_depth = (log_depth - input_mean_depth) * context
input_disp = 1./np.abs(input_depth)
input_disp[mask > 0] = 0
input_disp = input_disp / input_disp.max()
valid_line = np.zeros_like(depth)
if valid_line_anchor is not None:
valid_line[valid_line_anchor[0]:valid_line_anchor[1], valid_line_anchor[2]:valid_line_anchor[3]] = 1
valid_line = valid_line[all_anchor[0]:all_anchor[1], all_anchor[2]:all_anchor[3]]
# f, ((ax1, ax2)) = plt.subplots(1, 2, sharex=True, sharey=True); ax1.imshow(global_context * 1 + global_mask * 2); ax2.imshow(image); plt.show()
# f, ((ax1, ax2, ax3)) = plt.subplots(1, 3, sharex=True, sharey=True); ax1.imshow(context * 1 + mask * 2); ax2.imshow(input_rgb); ax3.imshow(valid_line); plt.show()
# import pdb; pdb.set_trace()
# return
input_edge_map = edge_map[all_anchor[0]:all_anchor[1], all_anchor[2]:all_anchor[3]] * context
input_other_edge_with_id = other_edge_with_id[all_anchor[0]:all_anchor[1], all_anchor[2]:all_anchor[3]]
end_depth_maps = ((valid_line * input_edge_map) > 0) * input_depth
if isinstance(config["gpu_ids"], int) and (config["gpu_ids"] >= 0):
device = config["gpu_ids"]
else:
device = "cpu"
valid_edge_ids = sorted(list(input_other_edge_with_id[(valid_line * input_edge_map) > 0]))
valid_edge_ids = valid_edge_ids[1:] if (len(valid_edge_ids) > 0 and valid_edge_ids[0] == -1) else valid_edge_ids
edge = reduce(lambda x, y: (x + (input_other_edge_with_id == y).astype(np.uint8)).clip(0, 1), [np.zeros_like(mask)] + list(valid_edge_ids))
t_edge = torch.FloatTensor(edge).to(device)[None, None, ...]
t_rgb = torch.FloatTensor(input_rgb).to(device).permute(2,0,1).unsqueeze(0)
t_mask = torch.FloatTensor(mask).to(device)[None, None, ...]
t_context = torch.FloatTensor(context).to(device)[None, None, ...]
t_disp = torch.FloatTensor(input_disp).to(device)[None, None, ...]
t_depth_zero_mean_depth = torch.FloatTensor(input_zero_mean_depth).to(device)[None, None, ...]
depth_edge_output = depth_edge_model.forward_3P(t_mask, t_context, t_rgb, t_disp, t_edge, unit_length=128,
cuda=device)
t_output_edge = (depth_edge_output> config['ext_edge_threshold']).float() * t_mask + t_edge
output_raw_edge = t_output_edge.data.cpu().numpy().squeeze()
# import pdb; pdb.set_trace()
mesh = netx.Graph()
hxs, hys = np.where(output_raw_edge * mask > 0)
valid_map = mask + context
for hx, hy in zip(hxs, hys):
node = (hx, hy)
mesh.add_node((hx, hy))
eight_nes = [ne for ne in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1), \
(hx + 1, hy + 1), (hx - 1, hy - 1), (hx - 1, hy + 1), (hx + 1, hy - 1)]\
if 0 <= ne[0] < output_raw_edge.shape[0] and 0 <= ne[1] < output_raw_edge.shape[1] and 0 < output_raw_edge[ne[0], ne[1]]]
for ne in eight_nes:
mesh.add_edge(node, ne, length=np.hypot(ne[0] - hx, ne[1] - hy))
if end_depth_maps[ne[0], ne[1]] != 0:
mesh.nodes[ne[0], ne[1]]['cnt'] = True
mesh.nodes[ne[0], ne[1]]['depth'] = end_depth_maps[ne[0], ne[1]]
ccs = [*netx.connected_components(mesh)]
end_pts = []
for cc in ccs:
end_pts.append(set())
for node in cc:
if mesh.nodes[node].get('cnt') is not None:
end_pts[-1].add((node[0], node[1], mesh.nodes[node]['depth']))
fpath_map = np.zeros_like(output_raw_edge) - 1
npath_map = np.zeros_like(output_raw_edge) - 1
for end_pt, cc in zip(end_pts, ccs):
sorted_end_pt = []
if len(end_pt) >= 2:
continue
if len(end_pt) == 0:
continue
if len(end_pt) == 1:
sub_mesh = mesh.subgraph(list(cc)).copy()
pnodes = netx.periphery(sub_mesh)
ends = [*end_pt]
edge_id = global_mesh.nodes[(ends[0][0] + all_anchor[0], ends[0][1] + all_anchor[2], -ends[0][2])]['edge_id']
pnodes = sorted(pnodes,
key=lambda x: np.hypot((x[0] - ends[0][0]), (x[1] - ends[0][1])),
reverse=True)[0]
npath = [*netx.shortest_path(sub_mesh, (ends[0][0], ends[0][1]), pnodes, weight='length')]
for np_node in npath:
npath_map[np_node[0], np_node[1]] = edge_id
fpath = []
if global_mesh.nodes[(ends[0][0] + all_anchor[0], ends[0][1] + all_anchor[2], -ends[0][2])].get('far') is None:
print("None far")
import pdb; pdb.set_trace()
else:
fnodes = global_mesh.nodes[(ends[0][0] + all_anchor[0], ends[0][1] + all_anchor[2], -ends[0][2])].get('far')
fnodes = [(xx[0] - all_anchor[0], xx[1] - all_anchor[2], xx[2]) for xx in fnodes]
dmask = mask + 0
did = 0
while True:
did += 1
dmask = cv2.dilate(dmask, np.ones((3, 3)), iterations=1)
if did > 3:
break
# ffnode = [fnode for fnode in fnodes if (dmask[fnode[0], fnode[1]] > 0)]
ffnode = [fnode for fnode in fnodes if (dmask[fnode[0], fnode[1]] > 0 and mask[fnode[0], fnode[1]] == 0)]
if len(ffnode) > 0:
fnode = ffnode[0]
break
if len(ffnode) == 0:
continue
fpath.append((fnode[0], fnode[1]))
for step in range(0, len(npath) - 1):
parr = (npath[step + 1][0] - npath[step][0], npath[step + 1][1] - npath[step][1])
new_loc = (fpath[-1][0] + parr[0], fpath[-1][1] + parr[1])
new_loc_nes = [xx for xx in [(new_loc[0] + 1, new_loc[1]), (new_loc[0] - 1, new_loc[1]),
(new_loc[0], new_loc[1] + 1), (new_loc[0], new_loc[1] - 1)]\
if xx[0] >= 0 and xx[0] < fpath_map.shape[0] and xx[1] >= 0 and xx[1] < fpath_map.shape[1]]
if np.sum([fpath_map[nlne[0], nlne[1]] for nlne in new_loc_nes]) != -4:
break
if npath_map[new_loc[0], new_loc[1]] != -1:
if npath_map[new_loc[0], new_loc[1]] != edge_id:
break
else:
continue
if valid_area[new_loc[0], new_loc[1]] == 0:
break
new_loc_nes_eight = [xx for xx in [(new_loc[0] + 1, new_loc[1]), (new_loc[0] - 1, new_loc[1]),
(new_loc[0], new_loc[1] + 1), (new_loc[0], new_loc[1] - 1),
(new_loc[0] + 1, new_loc[1] + 1), (new_loc[0] + 1, new_loc[1] - 1),
(new_loc[0] - 1, new_loc[1] - 1), (new_loc[0] - 1, new_loc[1] + 1)]\
if xx[0] >= 0 and xx[0] < fpath_map.shape[0] and xx[1] >= 0 and xx[1] < fpath_map.shape[1]]
if np.sum([int(npath_map[nlne[0], nlne[1]] == edge_id) for nlne in new_loc_nes_eight]) == 0:
break
fpath.append((fpath[-1][0] + parr[0], fpath[-1][1] + parr[1]))
if step != len(npath) - 2:
for xx in npath[step+1:]:
if npath_map[xx[0], xx[1]] == edge_id:
npath_map[xx[0], xx[1]] = -1
if len(fpath) > 0:
for fp_node in fpath:
fpath_map[fp_node[0], fp_node[1]] = edge_id
# import pdb; pdb.set_trace()
far_edge = (fpath_map > -1).astype(np.uint8)
update_edge = (npath_map > -1) * mask + edge
t_update_edge = torch.FloatTensor(update_edge).to(device)[None, None, ...]
depth_output = depth_feat_model.forward_3P(t_mask, t_context, t_depth_zero_mean_depth, t_update_edge, unit_length=128,
cuda=device)
depth_output = depth_output.cpu().data.numpy().squeeze()
depth_output = np.exp(depth_output + input_mean_depth) * mask # + input_depth * context
# if "right" in direc.lower() and "-" not in direc.lower():
# plt.imshow(depth_output); plt.show()
# import pdb; pdb.set_trace()
# f, ((ax1, ax2)) = plt.subplots(1, 2, sharex=True, sharey=True); ax1.imshow(depth_output); ax2.imshow(npath_map + fpath_map); plt.show()
for near_id in np.unique(npath_map[npath_map > -1]):
depth_output = refine_depth_around_edge(depth_output.copy(),
(fpath_map == near_id).astype(np.uint8) * mask, # far_edge_map_in_mask,
(fpath_map == near_id).astype(np.uint8), # far_edge_map,
(npath_map == near_id).astype(np.uint8) * mask,
mask.copy(),
np.zeros_like(mask),
config)
# if "right" in direc.lower() and "-" not in direc.lower():
# plt.imshow(depth_output); plt.show()
# import pdb; pdb.set_trace()
# f, ((ax1, ax2)) = plt.subplots(1, 2, sharex=True, sharey=True); ax1.imshow(depth_output); ax2.imshow(npath_map + fpath_map); plt.show()
rgb_output = rgb_feat_model.forward_3P(t_mask, t_context, t_rgb, t_update_edge, unit_length=128,
cuda=device)
# rgb_output = rgb_feat_model.forward_3P(t_mask, t_context, t_rgb, t_update_edge, unit_length=128, cuda=config['gpu_ids'])
if config.get('gray_image') is True:
rgb_output = rgb_output.mean(1, keepdim=True).repeat((1,3,1,1))
rgb_output = ((rgb_output.squeeze().data.cpu().permute(1,2,0).numpy() * mask[..., None] + input_rgb) * 255).astype(np.uint8)
image[all_anchor[0]:all_anchor[1], all_anchor[2]:all_anchor[3]][mask > 0] = rgb_output[mask > 0] # np.array([255,0,0]) # rgb_output[mask > 0]
depth[all_anchor[0]:all_anchor[1], all_anchor[2]:all_anchor[3]][mask > 0] = depth_output[mask > 0]
# nxs, nys = np.where(mask > -1)
# for nx, ny in zip(nxs, nys):
# info_on_pix[(nx, ny)][0]['color'] = rgb_output[]
nxs, nys = np.where((npath_map > -1))
for nx, ny in zip(nxs, nys):
n_id = npath_map[nx, ny]
four_nes = [xx for xx in [(nx + 1, ny), (nx - 1, ny), (nx, ny + 1), (nx, ny - 1)]\
if 0 <= xx[0] < fpath_map.shape[0] and 0 <= xx[1] < fpath_map.shape[1]]
for nex, ney in four_nes:
if fpath_map[nex, ney] == n_id:
na, nb = (nx + all_anchor[0], ny + all_anchor[2], info_on_pix[(nx + all_anchor[0], ny + all_anchor[2])][0]['depth']), \
(nex + all_anchor[0], ney + all_anchor[2], info_on_pix[(nex + all_anchor[0], ney + all_anchor[2])][0]['depth'])
if global_mesh.has_edge(na, nb):
global_mesh.remove_edge(na, nb)
nxs, nys = np.where((fpath_map > -1))
for nx, ny in zip(nxs, nys):
n_id = fpath_map[nx, ny]
four_nes = [xx for xx in [(nx + 1, ny), (nx - 1, ny), (nx, ny + 1), (nx, ny - 1)]\
if 0 <= xx[0] < npath_map.shape[0] and 0 <= xx[1] < npath_map.shape[1]]
for nex, ney in four_nes:
if npath_map[nex, ney] == n_id:
na, nb = (nx + all_anchor[0], ny + all_anchor[2], info_on_pix[(nx + all_anchor[0], ny + all_anchor[2])][0]['depth']), \
(nex + all_anchor[0], ney + all_anchor[2], info_on_pix[(nex + all_anchor[0], ney + all_anchor[2])][0]['depth'])
if global_mesh.has_edge(na, nb):
global_mesh.remove_edge(na, nb)
nxs, nys = np.where(mask > 0)
for x, y in zip(nxs, nys):
x = x + all_anchor[0]
y = y + all_anchor[2]
cur_node = (x, y, 0)
new_node = (x, y, -abs(depth[x, y]))
disp = 1. / -abs(depth[x, y])
mapping_dict = {cur_node: new_node}
info_on_pix, global_mesh = update_info(mapping_dict, info_on_pix, global_mesh)
global_mesh.nodes[new_node]['color'] = image[x, y]
global_mesh.nodes[new_node]['old_color'] = image[x, y]
global_mesh.nodes[new_node]['disp'] = disp
info_on_pix[(x, y)][0]['depth'] = -abs(depth[x, y])
info_on_pix[(x, y)][0]['disp'] = disp
info_on_pix[(x, y)][0]['color'] = image[x, y]
nxs, nys = np.where((npath_map > -1))
for nx, ny in zip(nxs, nys):
self_node = (nx + all_anchor[0], ny + all_anchor[2], info_on_pix[(nx + all_anchor[0], ny + all_anchor[2])][0]['depth'])
if global_mesh.has_node(self_node) is False:
break
n_id = int(round(npath_map[nx, ny]))
four_nes = [xx for xx in [(nx + 1, ny), (nx - 1, ny), (nx, ny + 1), (nx, ny - 1)]\
if 0 <= xx[0] < fpath_map.shape[0] and 0 <= xx[1] < fpath_map.shape[1]]
for nex, ney in four_nes:
ne_node = (nex + all_anchor[0], ney + all_anchor[2], info_on_pix[(nex + all_anchor[0], ney + all_anchor[2])][0]['depth'])
if global_mesh.has_node(ne_node) is False:
continue
if fpath_map[nex, ney] == n_id:
if global_mesh.nodes[self_node].get('edge_id') is None:
global_mesh.nodes[self_node]['edge_id'] = n_id
edge_ccs[n_id].add(self_node)
info_on_pix[(self_node[0], self_node[1])][0]['edge_id'] = n_id
if global_mesh.has_edge(self_node, ne_node) is True:
global_mesh.remove_edge(self_node, ne_node)
if global_mesh.nodes[self_node].get('far') is None:
global_mesh.nodes[self_node]['far'] = []
global_mesh.nodes[self_node]['far'].append(ne_node)
global_fpath_map = np.zeros_like(other_edge_with_id) - 1
global_fpath_map[all_anchor[0]:all_anchor[1], all_anchor[2]:all_anchor[3]] = fpath_map
fpath_ids = np.unique(global_fpath_map)
fpath_ids = fpath_ids[1:] if fpath_ids.shape[0] > 0 and fpath_ids[0] == -1 else []
fpath_real_id_map = np.zeros_like(global_fpath_map) - 1
for fpath_id in fpath_ids:
fpath_real_id = np.unique(((global_fpath_map == fpath_id).astype(np.int) * (other_edge_with_id + 1)) - 1)
fpath_real_id = fpath_real_id[1:] if fpath_real_id.shape[0] > 0 and fpath_real_id[0] == -1 else []
fpath_real_id = fpath_real_id.astype(np.int)
fpath_real_id = np.bincount(fpath_real_id).argmax()
fpath_real_id_map[global_fpath_map == fpath_id] = fpath_real_id
nxs, nys = np.where((fpath_map > -1))
for nx, ny in zip(nxs, nys):
self_node = (nx + all_anchor[0], ny + all_anchor[2], info_on_pix[(nx + all_anchor[0], ny + all_anchor[2])][0]['depth'])
n_id = fpath_map[nx, ny]
four_nes = [xx for xx in [(nx + 1, ny), (nx - 1, ny), (nx, ny + 1), (nx, ny - 1)]\
if 0 <= xx[0] < npath_map.shape[0] and 0 <= xx[1] < npath_map.shape[1]]
for nex, ney in four_nes:
ne_node = (nex + all_anchor[0], ney + all_anchor[2], info_on_pix[(nex + all_anchor[0], ney + all_anchor[2])][0]['depth'])
if global_mesh.has_node(ne_node) is False:
continue
if npath_map[nex, ney] == n_id or global_mesh.nodes[ne_node].get('edge_id') == n_id:
if global_mesh.has_edge(self_node, ne_node) is True:
global_mesh.remove_edge(self_node, ne_node)
if global_mesh.nodes[self_node].get('near') is None:
global_mesh.nodes[self_node]['near'] = []
if global_mesh.nodes[self_node].get('edge_id') is None:
f_id = int(round(fpath_real_id_map[self_node[0], self_node[1]]))
global_mesh.nodes[self_node]['edge_id'] = f_id
info_on_pix[(self_node[0], self_node[1])][0]['edge_id'] = f_id
edge_ccs[f_id].add(self_node)
global_mesh.nodes[self_node]['near'].append(ne_node)
return info_on_pix, global_mesh, image, depth, edge_ccs
# for edge_cc in edge_ccs:
# for edge_node in edge_cc:
# edge_ccs
# context_ccs, mask_ccs, broken_mask_ccs, edge_ccs, erode_context_ccs, init_mask_connect, edge_maps, extend_context_ccs, extend_edge_ccs
def get_valid_size(imap):
x_max = np.where(imap.sum(1).squeeze() > 0)[0].max() + 1
x_min = np.where(imap.sum(1).squeeze() > 0)[0].min()
y_max = np.where(imap.sum(0).squeeze() > 0)[0].max() + 1
y_min = np.where(imap.sum(0).squeeze() > 0)[0].min()
size_dict = {'x_max':x_max, 'y_max':y_max, 'x_min':x_min, 'y_min':y_min}
return size_dict
def dilate_valid_size(isize_dict, imap, dilate=[0, 0]):
osize_dict = copy.deepcopy(isize_dict)
osize_dict['x_min'] = max(0, osize_dict['x_min'] - dilate[0])
osize_dict['x_max'] = min(imap.shape[0], osize_dict['x_max'] + dilate[0])
osize_dict['y_min'] = max(0, osize_dict['y_min'] - dilate[0])
osize_dict['y_max'] = min(imap.shape[1], osize_dict['y_max'] + dilate[1])
return osize_dict
def size_operation(size_a, size_b, operation):
assert operation == '+' or operation == '-', "Operation must be '+' (union) or '-' (exclude)"
osize = {}
if operation == '+':
osize['x_min'] = min(size_a['x_min'], size_b['x_min'])
osize['y_min'] = min(size_a['y_min'], size_b['y_min'])
osize['x_max'] = max(size_a['x_max'], size_b['x_max'])
osize['y_max'] = max(size_a['y_max'], size_b['y_max'])
assert operation != '-', "Operation '-' is undefined !"
return osize
def fill_dummy_bord(mesh, info_on_pix, image, depth, config):
context = np.zeros_like(depth).astype(np.uint8)
context[mesh.graph['hoffset']:mesh.graph['hoffset'] + mesh.graph['noext_H'],
mesh.graph['woffset']:mesh.graph['woffset'] + mesh.graph['noext_W']] = 1
mask = 1 - context
xs, ys = np.where(mask > 0)
depth = depth * context
image = image * context[..., None]
cur_depth = 0
cur_disp = 0
color = [0, 0, 0]
for x, y in zip(xs, ys):
cur_node = (x, y, cur_depth)
mesh.add_node(cur_node, color=color,
synthesis=False,
disp=cur_disp,
cc_id=set(),
ext_pixel=True)
info_on_pix[(x, y)] = [{'depth':cur_depth,
'color':mesh.nodes[(x, y, cur_depth)]['color'],
'synthesis':False,
'disp':mesh.nodes[cur_node]['disp'],
'ext_pixel':True}]
# for x, y in zip(xs, ys):
four_nes = [(xx, yy) for xx, yy in [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)] if\
0 <= x < mesh.graph['H'] and 0 <= y < mesh.graph['W'] and info_on_pix.get((xx, yy)) is not None]
for ne in four_nes:
# if (ne[0] - x) + (ne[1] - y) == 1 and info_on_pix.get((ne[0], ne[1])) is not None:
mesh.add_edge(cur_node, (ne[0], ne[1], info_on_pix[(ne[0], ne[1])][0]['depth']))
return mesh, info_on_pix
def enlarge_border(mesh, info_on_pix, depth, image, config):
mesh.graph['hoffset'], mesh.graph['woffset'] = config['extrapolation_thickness'], config['extrapolation_thickness']
mesh.graph['bord_up'], mesh.graph['bord_left'], mesh.graph['bord_down'], mesh.graph['bord_right'] = \
0, 0, mesh.graph['H'], mesh.graph['W']
# new_image = np.pad(image,
# pad_width=((config['extrapolation_thickness'], config['extrapolation_thickness']),
# (config['extrapolation_thickness'], config['extrapolation_thickness']), (0, 0)),
# mode='constant')
# new_depth = np.pad(depth,
# pad_width=((config['extrapolation_thickness'], config['extrapolation_thickness']),
# (config['extrapolation_thickness'], config['extrapolation_thickness'])),
# mode='constant')
return mesh, info_on_pix, depth, image
def fill_missing_node(mesh, info_on_pix, image, depth):
for x in range(mesh.graph['bord_up'], mesh.graph['bord_down']):
for y in range(mesh.graph['bord_left'], mesh.graph['bord_right']):
if info_on_pix.get((x, y)) is None:
print("fill missing node = ", x, y)
import pdb; pdb.set_trace()
re_depth, re_count = 0, 0
for ne in [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)]:
if info_on_pix.get(ne) is not None:
re_depth += info_on_pix[ne][0]['depth']
re_count += 1
if re_count == 0:
re_depth = -abs(depth[x, y])
else:
re_depth = re_depth / re_count
depth[x, y] = abs(re_depth)
info_on_pix[(x, y)] = [{'depth':re_depth,
'color':image[x, y],
'synthesis':False,
'disp':1./re_depth}]
mesh.add_node((x, y, re_depth), color=image[x, y],
synthesis=False,
disp=1./re_depth,
cc_id=set())
return mesh, info_on_pix, depth
def refresh_bord_depth(mesh, info_on_pix, image, depth):
H, W = mesh.graph['H'], mesh.graph['W']
corner_nodes = [(mesh.graph['bord_up'], mesh.graph['bord_left']),
(mesh.graph['bord_up'], mesh.graph['bord_right'] - 1),
(mesh.graph['bord_down'] - 1, mesh.graph['bord_left']),
(mesh.graph['bord_down'] - 1, mesh.graph['bord_right'] - 1)]
# (0, W - 1), (H - 1, 0), (H - 1, W - 1)]
bord_nodes = []
bord_nodes += [(mesh.graph['bord_up'], xx) for xx in range(mesh.graph['bord_left'] + 1, mesh.graph['bord_right'] - 1)]
bord_nodes += [(mesh.graph['bord_down'] - 1, xx) for xx in range(mesh.graph['bord_left'] + 1, mesh.graph['bord_right'] - 1)]
bord_nodes += [(xx, mesh.graph['bord_left']) for xx in range(mesh.graph['bord_up'] + 1, mesh.graph['bord_down'] - 1)]
bord_nodes += [(xx, mesh.graph['bord_right'] - 1) for xx in range(mesh.graph['bord_up'] + 1, mesh.graph['bord_down'] - 1)]
for xy in bord_nodes:
tgt_loc = None
if xy[0] == mesh.graph['bord_up']:
tgt_loc = (xy[0] + 1, xy[1])# (1, xy[1])
elif xy[0] == mesh.graph['bord_down'] - 1:
tgt_loc = (xy[0] - 1, xy[1]) # (H - 2, xy[1])
elif xy[1] == mesh.graph['bord_left']:
tgt_loc = (xy[0], xy[1] + 1)
elif xy[1] == mesh.graph['bord_right'] - 1:
tgt_loc = (xy[0], xy[1] - 1)
if tgt_loc is not None:
ne_infos = info_on_pix.get(tgt_loc)
if ne_infos is None:
import pdb; pdb.set_trace()
# if ne_infos is not None and len(ne_infos) == 1:
tgt_depth = ne_infos[0]['depth']
tgt_disp = ne_infos[0]['disp']
new_node = (xy[0], xy[1], tgt_depth)
src_node = (tgt_loc[0], tgt_loc[1], tgt_depth)
tgt_nes_loc = [(xx[0], xx[1]) \
for xx in mesh.neighbors(src_node)]
tgt_nes_loc = [(xx[0] - tgt_loc[0] + xy[0], xx[1] - tgt_loc[1] + xy[1]) for xx in tgt_nes_loc \
if abs(xx[0] - xy[0]) == 1 and abs(xx[1] - xy[1]) == 1]
tgt_nes_loc = [xx for xx in tgt_nes_loc if info_on_pix.get(xx) is not None]
tgt_nes_loc.append(tgt_loc)
# if (xy[0], xy[1]) == (559, 60):
# import pdb; pdb.set_trace()
if info_on_pix.get(xy) is not None and len(info_on_pix.get(xy)) > 0:
old_depth = info_on_pix[xy][0].get('depth')
old_node = (xy[0], xy[1], old_depth)
mesh.remove_edges_from([(old_ne, old_node) for old_ne in mesh.neighbors(old_node)])
mesh.add_edges_from([((zz[0], zz[1], info_on_pix[zz][0]['depth']), old_node) for zz in tgt_nes_loc])
mapping_dict = {old_node: new_node}
# if old_node[2] == new_node[2]:
# print("mapping_dict = ", mapping_dict)
info_on_pix, mesh = update_info(mapping_dict, info_on_pix, mesh)
else:
info_on_pix[xy] = []
info_on_pix[xy][0] = info_on_pix[tgt_loc][0]
info_on_pix['color'] = image[xy[0], xy[1]]
info_on_pix['old_color'] = image[xy[0], xy[1]]
mesh.add_node(new_node)
mesh.add_edges_from([((zz[0], zz[1], info_on_pix[zz][0]['depth']), new_node) for zz in tgt_nes_loc])
mesh.nodes[new_node]['far'] = None
mesh.nodes[new_node]['near'] = None
if mesh.nodes[src_node].get('far') is not None:
redundant_nodes = [ne for ne in mesh.nodes[src_node]['far'] if (ne[0], ne[1]) == xy]
[mesh.nodes[src_node]['far'].remove(aa) for aa in redundant_nodes]
if mesh.nodes[src_node].get('near') is not None:
redundant_nodes = [ne for ne in mesh.nodes[src_node]['near'] if (ne[0], ne[1]) == xy]
[mesh.nodes[src_node]['near'].remove(aa) for aa in redundant_nodes]
for xy in corner_nodes:
hx, hy = xy
four_nes = [xx for xx in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1)] if \
mesh.graph['bord_up'] <= xx[0] < mesh.graph['bord_down'] and \
mesh.graph['bord_left'] <= xx[1] < mesh.graph['bord_right']]
ne_nodes = []
ne_depths = []
for ne_loc in four_nes:
if info_on_pix.get(ne_loc) is not None:
ne_depths.append(info_on_pix[ne_loc][0]['depth'])
ne_nodes.append((ne_loc[0], ne_loc[1], info_on_pix[ne_loc][0]['depth']))
new_node = (xy[0], xy[1], float(np.mean(ne_depths)))
if info_on_pix.get(xy) is not None and len(info_on_pix.get(xy)) > 0:
old_depth = info_on_pix[xy][0].get('depth')
old_node = (xy[0], xy[1], old_depth)
mesh.remove_edges_from([(old_ne, old_node) for old_ne in mesh.neighbors(old_node)])
mesh.add_edges_from([(zz, old_node) for zz in ne_nodes])
mapping_dict = {old_node: new_node}
info_on_pix, mesh = update_info(mapping_dict, info_on_pix, mesh)
else:
info_on_pix[xy] = []
info_on_pix[xy][0] = info_on_pix[ne_loc[-1]][0]
info_on_pix['color'] = image[xy[0], xy[1]]
info_on_pix['old_color'] = image[xy[0], xy[1]]
mesh.add_node(new_node)
mesh.add_edges_from([(zz, new_node) for zz in ne_nodes])
mesh.nodes[new_node]['far'] = None
mesh.nodes[new_node]['near'] = None
for xy in bord_nodes + corner_nodes:
# if (xy[0], xy[1]) == (559, 60):
# import pdb; pdb.set_trace()
depth[xy[0], xy[1]] = abs(info_on_pix[xy][0]['depth'])
for xy in bord_nodes:
cur_node = (xy[0], xy[1], info_on_pix[xy][0]['depth'])
nes = mesh.neighbors(cur_node)
four_nes = set([(xy[0] + 1, xy[1]), (xy[0] - 1, xy[1]), (xy[0], xy[1] + 1), (xy[0], xy[1] - 1)]) - \
set([(ne[0], ne[1]) for ne in nes])
four_nes = [ne for ne in four_nes if mesh.graph['bord_up'] <= ne[0] < mesh.graph['bord_down'] and \
mesh.graph['bord_left'] <= ne[1] < mesh.graph['bord_right']]
four_nes = [(ne[0], ne[1], info_on_pix[(ne[0], ne[1])][0]['depth']) for ne in four_nes]
mesh.nodes[cur_node]['far'] = []
mesh.nodes[cur_node]['near'] = []
for ne in four_nes:
if abs(ne[2]) >= abs(cur_node[2]):
mesh.nodes[cur_node]['far'].append(ne)
else:
mesh.nodes[cur_node]['near'].append(ne)
return mesh, info_on_pix, depth
def get_union_size(mesh, dilate, *alls_cc):
all_cc = reduce(lambda x, y: x | y, [set()] + [*alls_cc])
min_x, min_y, max_x, max_y = mesh.graph['H'], mesh.graph['W'], 0, 0
H, W = mesh.graph['H'], mesh.graph['W']
for node in all_cc:
if node[0] < min_x:
min_x = node[0]
if node[0] > max_x:
max_x = node[0]
if node[1] < min_y:
min_y = node[1]
if node[1] > max_y:
max_y = node[1]
max_x = max_x + 1
max_y = max_y + 1
# mask_size = dilate_valid_size(mask_size, edge_dict['mask'], dilate=[20, 20])
osize_dict = dict()
osize_dict['x_min'] = max(0, min_x - dilate[0])
osize_dict['x_max'] = min(H, max_x + dilate[0])
osize_dict['y_min'] = max(0, min_y - dilate[1])
osize_dict['y_max'] = min(W, max_y + dilate[1])
return osize_dict
def incomplete_node(mesh, edge_maps, info_on_pix):
vis_map = np.zeros((mesh.graph['H'], mesh.graph['W']))
for node in mesh.nodes:
if mesh.nodes[node].get('synthesis') is not True:
connect_all_flag = False
nes = [xx for xx in mesh.neighbors(node) if mesh.nodes[xx].get('synthesis') is not True]
if len(nes) < 3 and 0 < node[0] < mesh.graph['H'] - 1 and 0 < node[1] < mesh.graph['W'] - 1:
if len(nes) <= 1:
connect_all_flag = True
else:
dan_ne_node_a = nes[0]
dan_ne_node_b = nes[1]
if abs(dan_ne_node_a[0] - dan_ne_node_b[0]) > 1 or \
abs(dan_ne_node_a[1] - dan_ne_node_b[1]) > 1:
connect_all_flag = True
if connect_all_flag == True:
vis_map[node[0], node[1]] = len(nes)
four_nes = [(node[0] - 1, node[1]), (node[0] + 1, node[1]), (node[0], node[1] - 1), (node[0], node[1] + 1)]
for ne in four_nes:
for info in info_on_pix[(ne[0], ne[1])]:
ne_node = (ne[0], ne[1], info['depth'])
if info.get('synthesis') is not True and mesh.has_node(ne_node):
mesh.add_edge(node, ne_node)
break
return mesh
def edge_inpainting(edge_id, context_cc, erode_context_cc, mask_cc, edge_cc, extend_edge_cc,
mesh, edge_map, edge_maps_with_id, config, union_size, depth_edge_model, inpaint_iter):
edge_dict = get_edge_from_nodes(context_cc, erode_context_cc, mask_cc, edge_cc, extend_edge_cc,
mesh.graph['H'], mesh.graph['W'], mesh)
edge_dict['edge'], end_depth_maps, _ = \
filter_irrelevant_edge_new(edge_dict['self_edge'] + edge_dict['comp_edge'],
edge_map,
edge_maps_with_id,
edge_id,
edge_dict['context'],
edge_dict['depth'], mesh, context_cc | erode_context_cc, spdb=True)
patch_edge_dict = dict()
patch_edge_dict['mask'], patch_edge_dict['context'], patch_edge_dict['rgb'], \
patch_edge_dict['disp'], patch_edge_dict['edge'] = \
crop_maps_by_size(union_size, edge_dict['mask'], edge_dict['context'],
edge_dict['rgb'], edge_dict['disp'], edge_dict['edge'])
tensor_edge_dict = convert2tensor(patch_edge_dict)
if require_depth_edge(patch_edge_dict['edge'], patch_edge_dict['mask']) and inpaint_iter == 0:
with torch.no_grad():
device = config["gpu_ids"] if isinstance(config["gpu_ids"], int) and config["gpu_ids"] >= 0 else "cpu"
depth_edge_output = depth_edge_model.forward_3P(tensor_edge_dict['mask'],
tensor_edge_dict['context'],
tensor_edge_dict['rgb'],
tensor_edge_dict['disp'],
tensor_edge_dict['edge'],
unit_length=128,
cuda=device)
depth_edge_output = depth_edge_output.cpu()
tensor_edge_dict['output'] = (depth_edge_output > config['ext_edge_threshold']).float() * tensor_edge_dict['mask'] + tensor_edge_dict['edge']
else:
tensor_edge_dict['output'] = tensor_edge_dict['edge']
depth_edge_output = tensor_edge_dict['edge'] + 0
patch_edge_dict['output'] = tensor_edge_dict['output'].squeeze().data.cpu().numpy()
edge_dict['output'] = np.zeros((mesh.graph['H'], mesh.graph['W']))
edge_dict['output'][union_size['x_min']:union_size['x_max'], union_size['y_min']:union_size['y_max']] = \
patch_edge_dict['output']
return edge_dict, end_depth_maps
def depth_inpainting(context_cc, extend_context_cc, erode_context_cc, mask_cc, mesh, config, union_size, depth_feat_model, edge_output, given_depth_dict=False, spdb=False):
if given_depth_dict is False:
depth_dict = get_depth_from_nodes(context_cc | extend_context_cc, erode_context_cc, mask_cc, mesh.graph['H'], mesh.graph['W'], mesh, config['log_depth'])
if edge_output is not None:
depth_dict['edge'] = edge_output
else:
depth_dict = given_depth_dict
patch_depth_dict = dict()
patch_depth_dict['mask'], patch_depth_dict['context'], patch_depth_dict['depth'], \
patch_depth_dict['zero_mean_depth'], patch_depth_dict['edge'] = \
crop_maps_by_size(union_size, depth_dict['mask'], depth_dict['context'],
depth_dict['real_depth'], depth_dict['zero_mean_depth'], depth_dict['edge'])
tensor_depth_dict = convert2tensor(patch_depth_dict)
resize_mask = open_small_mask(tensor_depth_dict['mask'], tensor_depth_dict['context'], 3, 41)
with torch.no_grad():
device = config["gpu_ids"] if isinstance(config["gpu_ids"], int) and config["gpu_ids"] >= 0 else "cpu"
depth_output = depth_feat_model.forward_3P(resize_mask,
tensor_depth_dict['context'],
tensor_depth_dict['zero_mean_depth'],
tensor_depth_dict['edge'],
unit_length=128,
cuda=device)
depth_output = depth_output.cpu()
tensor_depth_dict['output'] = torch.exp(depth_output + depth_dict['mean_depth']) * \
tensor_depth_dict['mask'] + tensor_depth_dict['depth']
patch_depth_dict['output'] = tensor_depth_dict['output'].data.cpu().numpy().squeeze()
depth_dict['output'] = np.zeros((mesh.graph['H'], mesh.graph['W']))
depth_dict['output'][union_size['x_min']:union_size['x_max'], union_size['y_min']:union_size['y_max']] = \
patch_depth_dict['output']
depth_output = depth_dict['output'] * depth_dict['mask'] + depth_dict['depth'] * depth_dict['context']
depth_output = smooth_cntsyn_gap(depth_dict['output'].copy() * depth_dict['mask'] + depth_dict['depth'] * depth_dict['context'],
depth_dict['mask'], depth_dict['context'],
init_mask_region=depth_dict['mask'])
if spdb is True:
f, ((ax1, ax2)) = plt.subplots(1, 2, sharex=True, sharey=True);
ax1.imshow(depth_output * depth_dict['mask'] + depth_dict['depth']); ax2.imshow(depth_dict['output'] * depth_dict['mask'] + depth_dict['depth']); plt.show()
import pdb; pdb.set_trace()
depth_dict['output'] = depth_output * depth_dict['mask'] + depth_dict['depth'] * depth_dict['context']
return depth_dict
def update_info(mapping_dict, info_on_pix, *meshes):
rt_meshes = []
for mesh in meshes:
rt_meshes.append(relabel_node(mesh, mesh.nodes, [*mapping_dict.keys()][0], [*mapping_dict.values()][0]))
x, y, _ = [*mapping_dict.keys()][0]
info_on_pix[(x, y)][0]['depth'] = [*mapping_dict.values()][0][2]
return [info_on_pix] + rt_meshes
def build_connection(mesh, cur_node, dst_node):
if (abs(cur_node[0] - dst_node[0]) + abs(cur_node[1] - dst_node[1])) < 2:
mesh.add_edge(cur_node, dst_node)
if abs(cur_node[0] - dst_node[0]) > 1 or abs(cur_node[1] - dst_node[1]) > 1:
return mesh
ne_nodes = [*mesh.neighbors(cur_node)].copy()
for ne_node in ne_nodes:
if mesh.has_edge(ne_node, dst_node) or ne_node == dst_node:
continue
else:
mesh = build_connection(mesh, ne_node, dst_node)
return mesh
def recursive_add_edge(edge_mesh, mesh, info_on_pix, cur_node, mark):
ne_nodes = [(x[0], x[1]) for x in edge_mesh.neighbors(cur_node)]
for node_xy in ne_nodes:
node = (node_xy[0], node_xy[1], info_on_pix[node_xy][0]['depth'])
if mark[node[0], node[1]] != 3:
continue
else:
mark[node[0], node[1]] = 0
mesh.remove_edges_from([(xx, node) for xx in mesh.neighbors(node)])
mesh = build_connection(mesh, cur_node, node)
re_info = dict(depth=0, count=0)
for re_ne in mesh.neighbors(node):
re_info['depth'] += re_ne[2]
re_info['count'] += 1.
try:
re_depth = re_info['depth'] / re_info['count']
except:
re_depth = node[2]
re_node = (node_xy[0], node_xy[1], re_depth)
mapping_dict = {node: re_node}
info_on_pix, edge_mesh, mesh = update_info(mapping_dict, info_on_pix, edge_mesh, mesh)
edge_mesh, mesh, mark, info_on_pix = recursive_add_edge(edge_mesh, mesh, info_on_pix, re_node, mark)
return edge_mesh, mesh, mark, info_on_pix
def resize_for_edge(tensor_dict, largest_size):
resize_dict = {k: v.clone() for k, v in tensor_dict.items()}
frac = largest_size / np.array([*resize_dict['edge'].shape[-2:]]).max()
if frac < 1:
resize_mark = torch.nn.functional.interpolate(torch.cat((resize_dict['mask'],
resize_dict['context']),
dim=1),
scale_factor=frac,
mode='bilinear')
resize_dict['mask'] = (resize_mark[:, 0:1] > 0).float()
resize_dict['context'] = (resize_mark[:, 1:2] == 1).float()
resize_dict['context'][resize_dict['mask'] > 0] = 0
resize_dict['edge'] = torch.nn.functional.interpolate(resize_dict['edge'],
scale_factor=frac,
mode='bilinear')
resize_dict['edge'] = (resize_dict['edge'] > 0).float()
resize_dict['edge'] = resize_dict['edge'] * resize_dict['context']
resize_dict['disp'] = torch.nn.functional.interpolate(resize_dict['disp'],
scale_factor=frac,
mode='nearest')
resize_dict['disp'] = resize_dict['disp'] * resize_dict['context']
resize_dict['rgb'] = torch.nn.functional.interpolate(resize_dict['rgb'],
scale_factor=frac,
mode='bilinear')
resize_dict['rgb'] = resize_dict['rgb'] * resize_dict['context']
return resize_dict
def get_map_from_nodes(nodes, height, width):
omap = np.zeros((height, width))
for n in nodes:
omap[n[0], n[1]] = 1
return omap
def get_map_from_ccs(ccs, height, width, condition_input=None, condition=None, real_id=False, id_shift=0):
if condition is None:
condition = lambda x, condition_input: True
if real_id is True:
omap = np.zeros((height, width)) + (-1) + id_shift
else:
omap = np.zeros((height, width))
for cc_id, cc in enumerate(ccs):
for n in cc:
if condition(n, condition_input):
if real_id is True:
omap[n[0], n[1]] = cc_id + id_shift
else:
omap[n[0], n[1]] = 1
return omap
def revise_map_by_nodes(nodes, imap, operation, limit_constr=None):
assert operation == '+' or operation == '-', "Operation must be '+' (union) or '-' (exclude)"
omap = copy.deepcopy(imap)
revise_flag = True
if operation == '+':
for n in nodes:
omap[n[0], n[1]] = 1
if limit_constr is not None and omap.sum() > limit_constr:
omap = imap
revise_flag = False
elif operation == '-':
for n in nodes:
omap[n[0], n[1]] = 0
if limit_constr is not None and omap.sum() < limit_constr:
omap = imap
revise_flag = False
return omap, revise_flag
def repaint_info(mesh, cc, x_anchor, y_anchor, source_type):
if source_type == 'rgb':
feat = np.zeros((3, x_anchor[1] - x_anchor[0], y_anchor[1] - y_anchor[0]))
else:
feat = np.zeros((1, x_anchor[1] - x_anchor[0], y_anchor[1] - y_anchor[0]))
for node in cc:
if source_type == 'rgb':
feat[:, node[0] - x_anchor[0], node[1] - y_anchor[0]] = np.array(mesh.nodes[node]['color']) / 255.
elif source_type == 'd':
feat[:, node[0] - x_anchor[0], node[1] - y_anchor[0]] = abs(node[2])
return feat
def get_context_from_nodes(mesh, cc, H, W, source_type=''):
if 'rgb' in source_type or 'color' in source_type:
feat = np.zeros((H, W, 3))
else:
feat = np.zeros((H, W))
context = np.zeros((H, W))
for node in cc:
if 'rgb' in source_type or 'color' in source_type:
feat[node[0], node[1]] = np.array(mesh.nodes[node]['color']) / 255.
context[node[0], node[1]] = 1
else:
feat[node[0], node[1]] = abs(node[2])
return feat, context
def get_mask_from_nodes(mesh, cc, H, W):
mask = np.zeros((H, W))
for node in cc:
mask[node[0], node[1]] = abs(node[2])
return mask
def get_edge_from_nodes(context_cc, erode_context_cc, mask_cc, edge_cc, extend_edge_cc, H, W, mesh):
context = np.zeros((H, W))
mask = np.zeros((H, W))
rgb = np.zeros((H, W, 3))
disp = np.zeros((H, W))
depth = np.zeros((H, W))
real_depth = np.zeros((H, W))
edge = np.zeros((H, W))
comp_edge = np.zeros((H, W))
fpath_map = np.zeros((H, W)) - 1
npath_map = np.zeros((H, W)) - 1
near_depth = np.zeros((H, W))
for node in context_cc:
rgb[node[0], node[1]] = np.array(mesh.nodes[node]['color'])
disp[node[0], node[1]] = mesh.nodes[node]['disp']
depth[node[0], node[1]] = node[2]
context[node[0], node[1]] = 1
for node in erode_context_cc:
rgb[node[0], node[1]] = np.array(mesh.nodes[node]['color'])
disp[node[0], node[1]] = mesh.nodes[node]['disp']
depth[node[0], node[1]] = node[2]
context[node[0], node[1]] = 1
rgb = rgb / 255.
disp = np.abs(disp)
disp = disp / disp.max()
real_depth = depth.copy()
for node in context_cc:
if mesh.nodes[node].get('real_depth') is not None:
real_depth[node[0], node[1]] = mesh.nodes[node]['real_depth']
for node in erode_context_cc:
if mesh.nodes[node].get('real_depth') is not None:
real_depth[node[0], node[1]] = mesh.nodes[node]['real_depth']
for node in mask_cc:
mask[node[0], node[1]] = 1
near_depth[node[0], node[1]] = node[2]
for node in edge_cc:
edge[node[0], node[1]] = 1
for node in extend_edge_cc:
comp_edge[node[0], node[1]] = 1
rt_dict = {'rgb': rgb, 'disp': disp, 'depth': depth, 'real_depth': real_depth, 'self_edge': edge, 'context': context,
'mask': mask, 'fpath_map': fpath_map, 'npath_map': npath_map, 'comp_edge': comp_edge, 'valid_area': context + mask,
'near_depth': near_depth}
return rt_dict
def get_depth_from_maps(context_map, mask_map, depth_map, H, W, log_depth=False):
context = context_map.astype(np.uint8)
mask = mask_map.astype(np.uint8).copy()
depth = np.abs(depth_map)
real_depth = depth.copy()
zero_mean_depth = np.zeros((H, W))
if log_depth is True:
log_depth = np.log(real_depth + 1e-8) * context
mean_depth = np.mean(log_depth[context > 0])
zero_mean_depth = (log_depth - mean_depth) * context
else:
zero_mean_depth = real_depth
mean_depth = 0
edge = np.zeros_like(depth)
rt_dict = {'depth': depth, 'real_depth': real_depth, 'context': context, 'mask': mask,
'mean_depth': mean_depth, 'zero_mean_depth': zero_mean_depth, 'edge': edge}
return rt_dict
def get_depth_from_nodes(context_cc, erode_context_cc, mask_cc, H, W, mesh, log_depth=False):
context = np.zeros((H, W))
mask = np.zeros((H, W))
depth = np.zeros((H, W))
real_depth = np.zeros((H, W))
zero_mean_depth = np.zeros((H, W))
for node in context_cc:
depth[node[0], node[1]] = node[2]
context[node[0], node[1]] = 1
for node in erode_context_cc:
depth[node[0], node[1]] = node[2]
context[node[0], node[1]] = 1
depth = np.abs(depth)
real_depth = depth.copy()
for node in context_cc:
if mesh.nodes[node].get('real_depth') is not None:
real_depth[node[0], node[1]] = mesh.nodes[node]['real_depth']
for node in erode_context_cc:
if mesh.nodes[node].get('real_depth') is not None:
real_depth[node[0], node[1]] = mesh.nodes[node]['real_depth']
real_depth = np.abs(real_depth)
for node in mask_cc:
mask[node[0], node[1]] = 1
if log_depth is True:
log_depth = np.log(real_depth + 1e-8) * context
mean_depth = np.mean(log_depth[context > 0])
zero_mean_depth = (log_depth - mean_depth) * context
else:
zero_mean_depth = real_depth
mean_depth = 0
rt_dict = {'depth': depth, 'real_depth': real_depth, 'context': context, 'mask': mask,
'mean_depth': mean_depth, 'zero_mean_depth': zero_mean_depth}
return rt_dict
def get_rgb_from_nodes(context_cc, erode_context_cc, mask_cc, H, W, mesh):
context = np.zeros((H, W))
mask = np.zeros((H, W))
rgb = np.zeros((H, W, 3))
erode_context = np.zeros((H, W))
for node in context_cc:
rgb[node[0], node[1]] = np.array(mesh.nodes[node]['color'])
context[node[0], node[1]] = 1
rgb = rgb / 255.
for node in mask_cc:
mask[node[0], node[1]] = 1
for node in erode_context_cc:
erode_context[node[0], node[1]] = 1
mask[node[0], node[1]] = 1
rt_dict = {'rgb': rgb, 'context': context, 'mask': mask,
'erode': erode_context}
return rt_dict
def crop_maps_by_size(size, *imaps):
omaps = []
for imap in imaps:
omaps.append(imap[size['x_min']:size['x_max'], size['y_min']:size['y_max']].copy())
return omaps
def convert2tensor(input_dict):
rt_dict = {}
for key, value in input_dict.items():
if 'rgb' in key or 'color' in key:
rt_dict[key] = torch.FloatTensor(value).permute(2, 0, 1)[None, ...]
else:
rt_dict[key] = torch.FloatTensor(value)[None, None, ...]
return rt_dict
|