File size: 137,611 Bytes
0b9f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
import os
import numpy as np
try:
    import cynetworkx as netx
except ImportError:
    import networkx as netx
import matplotlib.pyplot as plt
from functools import partial
from vispy import scene, io
from vispy.scene import visuals
from vispy.visuals.filters import Alpha
import cv2
from moviepy.editor import ImageSequenceClip
from skimage.transform import resize
import time
import copy
import torch
import os
from utils import path_planning, open_small_mask, clean_far_edge, refine_depth_around_edge
from utils import refine_color_around_edge, filter_irrelevant_edge_new, require_depth_edge, clean_far_edge_new
from utils import create_placeholder, refresh_node, find_largest_rect
from mesh_tools import get_depth_from_maps, get_map_from_ccs, get_edge_from_nodes, get_depth_from_nodes, get_rgb_from_nodes, crop_maps_by_size, convert2tensor, recursive_add_edge, update_info, filter_edge, relabel_node, depth_inpainting
from mesh_tools import refresh_bord_depth, enlarge_border, fill_dummy_bord, extrapolate, fill_missing_node, incomplete_node, get_valid_size, dilate_valid_size, size_operation
import transforms3d
import random
from functools import reduce

def create_mesh(depth, image, int_mtx, config):
    H, W, C = image.shape
    ext_H, ext_W = H + 2 * config['extrapolation_thickness'], W + 2 * config['extrapolation_thickness']
    LDI = netx.Graph(H=ext_H, W=ext_W, noext_H=H, noext_W=W, cam_param=int_mtx)
    xy2depth = {}
    int_mtx_pix = int_mtx * np.array([[W], [H], [1.]])
    LDI.graph['cam_param_pix'], LDI.graph['cam_param_pix_inv'] = int_mtx_pix, np.linalg.inv(int_mtx_pix)
    disp = 1. / (-depth)
    LDI.graph['hoffset'], LDI.graph['woffset'] = config['extrapolation_thickness'], config['extrapolation_thickness']
    LDI.graph['bord_up'], LDI.graph['bord_down'] = LDI.graph['hoffset'] + 0, LDI.graph['hoffset'] + H
    LDI.graph['bord_left'], LDI.graph['bord_right'] = LDI.graph['woffset'] + 0, LDI.graph['woffset'] + W
    for idx in range(H):
        for idy in range(W):
            x, y = idx + LDI.graph['hoffset'], idy + LDI.graph['woffset']
            LDI.add_node((x, y, -depth[idx, idy]),
                         color=image[idx, idy],
                         disp=disp[idx, idy],
                         synthesis=False,
                         cc_id=set())
            xy2depth[(x, y)] = [-depth[idx, idy]]
    for x, y, d in LDI.nodes:
        two_nes = [ne for ne in [(x+1, y), (x, y+1)] if ne[0] < LDI.graph['bord_down'] and ne[1] < LDI.graph['bord_right']]
        [LDI.add_edge((ne[0], ne[1], xy2depth[ne][0]), (x, y, d)) for ne in two_nes]
    LDI = calculate_fov(LDI)
    image = np.pad(image,
                    pad_width=((config['extrapolation_thickness'], config['extrapolation_thickness']),
                               (config['extrapolation_thickness'], config['extrapolation_thickness']),
                               (0, 0)),
                    mode='constant')
    depth = np.pad(depth,
                    pad_width=((config['extrapolation_thickness'], config['extrapolation_thickness']),
                               (config['extrapolation_thickness'], config['extrapolation_thickness'])),
                    mode='constant')

    return LDI, xy2depth, image, depth


def tear_edges(mesh, threshold = 0.00025, xy2depth=None):
    remove_edge_list = []
    remove_horizon, remove_vertical = np.zeros((2, mesh.graph['H'], mesh.graph['W']))
    mesh_nodes = mesh.nodes
    for edge in mesh.edges:
        if abs(mesh_nodes[edge[0]]['disp'] - mesh_nodes[edge[1]]['disp']) > threshold:
            remove_edge_list.append((edge[0], edge[1]))

            near, far = edge if abs(edge[0][2]) < abs(edge[1][2]) else edge[::-1]

            mesh_nodes[far]['near'] = [] if mesh_nodes[far].get('near') is None else mesh_nodes[far]['near'].append(near)
            mesh_nodes[near]['far'] = [] if mesh_nodes[near].get('far') is None else mesh_nodes[near]['far'].append(far)

            if near[0] == far[0]:
                remove_horizon[near[0], np.minimum(near[1], far[1])] = 1
            elif near[1] == far[1]:
                remove_vertical[np.minimum(near[0], far[0]), near[1]] = 1
    mesh.remove_edges_from(remove_edge_list)

    remove_edge_list = []

    dang_horizon = np.where(np.roll(remove_horizon, 1, 0) + np.roll(remove_horizon, -1, 0) - remove_horizon == 2)
    dang_vertical = np.where(np.roll(remove_vertical, 1, 1) + np.roll(remove_vertical, -1, 1) - remove_vertical == 2)

    horizon_condition = lambda x, y: mesh.graph['bord_up'] + 1 <= x < mesh.graph['bord_down'] - 1
    vertical_condition = lambda x, y: mesh.graph['bord_left'] + 1 <= y < mesh.graph['bord_right'] - 1

    prjto3d = lambda x, y: (x, y, xy2depth[(x, y)][0])

    node_existence = lambda x, y: mesh.has_node(prjto3d(x, y))

    for x, y in zip(dang_horizon[0], dang_horizon[1]):
        if horizon_condition(x, y) and node_existence(x, y) and node_existence(x, y+1):
            remove_edge_list.append((prjto3d(x, y), prjto3d(x, y+1)))
    for x, y in zip(dang_vertical[0], dang_vertical[1]):
        if vertical_condition(x, y) and node_existence(x, y) and node_existence(x+1, y):
            remove_edge_list.append((prjto3d(x, y), prjto3d(x+1, y)))
    mesh.remove_edges_from(remove_edge_list)

    return mesh

def calculate_fov(mesh):
    k = mesh.graph['cam_param']
    mesh.graph['hFov'] = 2 * np.arctan(1. / (2*k[0, 0]))
    mesh.graph['vFov'] = 2 * np.arctan(1. / (2*k[1, 1]))
    mesh.graph['aspect'] = mesh.graph['noext_H'] / mesh.graph['noext_W']

    return mesh

def calculate_fov_FB(mesh):
    mesh.graph['aspect'] = mesh.graph['H'] / mesh.graph['W']
    if mesh.graph['H'] > mesh.graph['W']:
        mesh.graph['hFov'] = 0.508015513
        half_short = np.tan(mesh.graph['hFov']/2.0)
        half_long = half_short * mesh.graph['aspect']
        mesh.graph['vFov'] = 2.0 * np.arctan(half_long)
    else:
        mesh.graph['vFov'] = 0.508015513
        half_short = np.tan(mesh.graph['vFov']/2.0)
        half_long = half_short / mesh.graph['aspect']
        mesh.graph['hFov'] = 2.0 * np.arctan(half_long)

    return mesh

def reproject_3d_int_detail(sx, sy, z, k_00, k_02, k_11, k_12, w_offset, h_offset):
    abs_z = abs(z)
    return [abs_z * ((sy+0.5-w_offset) * k_00 + k_02), abs_z * ((sx+0.5-h_offset) * k_11 + k_12), abs_z]

def reproject_3d_int_detail_FB(sx, sy, z, w_offset, h_offset, mesh):
    if mesh.graph.get('tan_hFov') is None:
        mesh.graph['tan_hFov'] = np.tan(mesh.graph['hFov'] / 2.)
    if mesh.graph.get('tan_vFov') is None:
        mesh.graph['tan_vFov'] = np.tan(mesh.graph['vFov'] / 2.)

    ray = np.array([(-1. + 2. * ((sy+0.5-w_offset)/(mesh.graph['W'] - 1))) * mesh.graph['tan_hFov'],
                    (1. - 2. * (sx+0.5-h_offset)/(mesh.graph['H'] - 1)) * mesh.graph['tan_vFov'],
                    -1])
    point_3d = ray * np.abs(z)

    return point_3d


def reproject_3d_int(sx, sy, z, mesh):
    k = mesh.graph['cam_param_pix_inv'].copy()
    if k[0, 2] > 0:
        k = np.linalg.inv(k)
    ray = np.dot(k, np.array([sy-mesh.graph['woffset'], sx-mesh.graph['hoffset'], 1]).reshape(3, 1))

    point_3d = ray * np.abs(z)
    point_3d = point_3d.flatten()

    return point_3d

def generate_init_node(mesh, config, min_node_in_cc):
    mesh_nodes = mesh.nodes

    info_on_pix = {}

    ccs = sorted(netx.connected_components(mesh), key = len, reverse=True)
    remove_nodes = []

    for cc in ccs:

        remove_flag = True if len(cc) < min_node_in_cc else False
        if remove_flag is False:
            for (nx, ny, nd) in cc:
                info_on_pix[(nx, ny)] = [{'depth':nd,
                                          'color':mesh_nodes[(nx, ny, nd)]['color'],
                                          'synthesis':False,
                                          'disp':mesh_nodes[(nx, ny, nd)]['disp']}]
        else:
            [remove_nodes.append((nx, ny, nd)) for (nx, ny, nd) in cc]

    for node in remove_nodes:
        far_nodes = [] if mesh_nodes[node].get('far') is None else mesh_nodes[node]['far']
        for far_node in far_nodes:
            if mesh.has_node(far_node) and mesh_nodes[far_node].get('near') is not None and node in mesh_nodes[far_node]['near']:
                mesh_nodes[far_node]['near'].remove(node)
        near_nodes = [] if mesh_nodes[node].get('near') is None else mesh_nodes[node]['near']
        for near_node in near_nodes:
            if mesh.has_node(near_node) and mesh_nodes[near_node].get('far') is not None and node in mesh_nodes[near_node]['far']:
                mesh_nodes[near_node]['far'].remove(node)

    [mesh.remove_node(node) for node in remove_nodes]

    return mesh, info_on_pix

def get_neighbors(mesh, node):
    return [*mesh.neighbors(node)]

def generate_face(mesh, info_on_pix, config):
    H, W = mesh.graph['H'], mesh.graph['W']
    str_faces = []
    num_node = len(mesh.nodes)
    ply_flag = config.get('save_ply')
    def out_fmt(input, cur_id_b, cur_id_self, cur_id_a, ply_flag):
        if ply_flag is True:
            input.append(' '.join(['3', cur_id_b, cur_id_self, cur_id_a]) + '\n')
        else:
            input.append([cur_id_b, cur_id_self, cur_id_a])
    mesh_nodes = mesh.nodes
    for node in mesh_nodes:
        cur_id_self = mesh_nodes[node]['cur_id']
        ne_nodes = get_neighbors(mesh, node)
        four_dir_nes = {'up': [], 'left': [],
                        'down': [], 'right': []}
        for ne_node in ne_nodes:
            store_tuple = [ne_node, mesh_nodes[ne_node]['cur_id']]
            if ne_node[0] == node[0]:
                if ne_node[1] == ne_node[1] - 1:
                    four_dir_nes['left'].append(store_tuple)
                else:
                    four_dir_nes['right'].append(store_tuple)
            else:
                if ne_node[0] == ne_node[0] - 1:
                    four_dir_nes['up'].append(store_tuple)
                else:
                    four_dir_nes['down'].append(store_tuple)
        for node_a, cur_id_a in four_dir_nes['up']:
            for node_b, cur_id_b in four_dir_nes['right']:
                out_fmt(str_faces, cur_id_b, cur_id_self, cur_id_a, ply_flag)
        for node_a, cur_id_a in four_dir_nes['right']:
            for node_b, cur_id_b in four_dir_nes['down']:
                out_fmt(str_faces, cur_id_b, cur_id_self, cur_id_a, ply_flag)
        for node_a, cur_id_a in four_dir_nes['down']:
            for node_b, cur_id_b in four_dir_nes['left']:
                out_fmt(str_faces, cur_id_b, cur_id_self, cur_id_a, ply_flag)
        for node_a, cur_id_a in four_dir_nes['left']:
            for node_b, cur_id_b in four_dir_nes['up']:
                out_fmt(str_faces, cur_id_b, cur_id_self, cur_id_a, ply_flag)

    return str_faces

def reassign_floating_island(mesh, info_on_pix, image, depth):
    H, W = mesh.graph['H'], mesh.graph['W'],
    mesh_nodes = mesh.nodes
    bord_up, bord_down = mesh.graph['bord_up'], mesh.graph['bord_down']
    bord_left, bord_right = mesh.graph['bord_left'], mesh.graph['bord_right']
    W = mesh.graph['W']
    lost_map = np.zeros((H, W))

    '''
    (5) is_inside(x, y, xmin, xmax, ymin, ymax) : Check if a pixel(x, y) is inside the border.
    (6) get_cross_nes(x, y) : Get the four cross neighbors of pixel(x, y).
    '''
    key_exist = lambda d, k: k in d
    is_inside = lambda x, y, xmin, xmax, ymin, ymax: xmin <= x < xmax and ymin <= y < ymax
    get_cross_nes = lambda x, y: [(x + 1, y), (x - 1, y), (x, y - 1), (x, y + 1)]
    '''
    (A) Highlight the pixels on isolated floating island.
    (B) Number those isolated floating islands with connected component analysis.
    (C) For each isolated island:
        (1) Find its longest surrounded depth edge.
        (2) Propogate depth from that depth edge to the pixels on the isolated island.
        (3) Build the connection between the depth edge and that isolated island.
    '''
    for x in range(H):
        for y in range(W):
            if is_inside(x, y, bord_up, bord_down, bord_left, bord_right) and not(key_exist(info_on_pix, (x, y))):
                lost_map[x, y] = 1
    _, label_lost_map = cv2.connectedComponents(lost_map.astype(np.uint8), connectivity=4)
    mask = np.zeros((H, W))
    mask[bord_up:bord_down, bord_left:bord_right] = 1
    label_lost_map = (label_lost_map * mask).astype(np.int)

    for i in range(1, label_lost_map.max()+1):
        lost_xs, lost_ys = np.where(label_lost_map == i)
        surr_edge_ids = {}
        for lost_x, lost_y in zip(lost_xs, lost_ys):
            if (lost_x, lost_y) == (295, 389) or (lost_x, lost_y) == (296, 389):
                import pdb; pdb.set_trace()
            for ne in get_cross_nes(lost_x, lost_y):
                if key_exist(info_on_pix, ne):
                    for info in info_on_pix[ne]:
                        ne_node = (ne[0], ne[1], info['depth'])
                        if key_exist(mesh_nodes[ne_node], 'edge_id'):
                            edge_id = mesh_nodes[ne_node]['edge_id']
                            surr_edge_ids[edge_id] = surr_edge_ids[edge_id] + [ne_node] if \
                                                key_exist(surr_edge_ids, edge_id) else [ne_node]
        if len(surr_edge_ids) == 0:
            continue
        edge_id, edge_nodes = sorted([*surr_edge_ids.items()], key=lambda x: len(x[1]), reverse=True)[0]
        edge_depth_map = np.zeros((H, W))
        for node in edge_nodes:
            edge_depth_map[node[0], node[1]] = node[2]
        lost_xs, lost_ys = np.where(label_lost_map == i)
        while lost_xs.shape[0] > 0:
            lost_xs, lost_ys = np.where(label_lost_map == i)
            for lost_x, lost_y in zip(lost_xs, lost_ys):
                propagated_depth = []
                real_nes = []
                for ne in get_cross_nes(lost_x, lost_y):
                    if not(is_inside(ne[0], ne[1], bord_up, bord_down, bord_left, bord_right)) or \
                       edge_depth_map[ne[0], ne[1]] == 0:
                        continue
                    propagated_depth.append(edge_depth_map[ne[0], ne[1]])
                    real_nes.append(ne)
                if len(real_nes) == 0:
                    continue
                reassign_depth = np.mean(propagated_depth)
                label_lost_map[lost_x, lost_y] = 0
                edge_depth_map[lost_x, lost_y] = reassign_depth
                depth[lost_x, lost_y] = -reassign_depth
                mesh.add_node((lost_x, lost_y, reassign_depth), color=image[lost_x, lost_y],
                                                            synthesis=False,
                                                            disp=1./reassign_depth,
                                                            cc_id=set())
                info_on_pix[(lost_x, lost_y)] = [{'depth':reassign_depth,
                                                  'color':image[lost_x, lost_y],
                                                  'synthesis':False,
                                                  'disp':1./reassign_depth}]
                new_connections = [((lost_x, lost_y, reassign_depth),
                                    (ne[0], ne[1], edge_depth_map[ne[0], ne[1]])) for ne in real_nes]
                mesh.add_edges_from(new_connections)

    return mesh, info_on_pix, depth

def remove_node_feat(mesh, *feats):
    mesh_nodes = mesh.nodes
    for node in mesh_nodes:
        for feat in feats:
            mesh_nodes[node][feat] = None

    return mesh

def update_status(mesh, info_on_pix, depth=None):
    '''
    (2) clear_node_feat(G, *fts) : Clear all the node feature on graph G.
    (6) get_cross_nes(x, y) : Get the four cross neighbors of pixel(x, y).
    '''
    key_exist = lambda d, k: d.get(k) is not None
    is_inside = lambda x, y, xmin, xmax, ymin, ymax: xmin <= x < xmax and ymin <= y < ymax
    get_cross_nes = lambda x, y: [(x + 1, y), (x - 1, y), (x, y - 1), (x, y + 1)]
    append_element = lambda d, k, x: d[k] + [x] if key_exist(d, k) else [x]

    def clear_node_feat(G, fts):
        le_nodes = G.nodes
        for k in le_nodes:
            v = le_nodes[k]
            for ft in fts:
                if ft in v:
                    v[ft] = None

    clear_node_feat(mesh, ['edge_id', 'far', 'near'])
    bord_up, bord_down = mesh.graph['bord_up'], mesh.graph['bord_down']
    bord_left, bord_right = mesh.graph['bord_left'], mesh.graph['bord_right']

    le_nodes = mesh.nodes

    for node_key in le_nodes:
        if mesh.neighbors(node_key).__length_hint__() == 4:
            continue
        four_nes = [xx for xx in get_cross_nes(node_key[0], node_key[1]) if
                    is_inside(xx[0], xx[1], bord_up, bord_down, bord_left, bord_right) and
                    xx in info_on_pix]
        [four_nes.remove((ne_node[0], ne_node[1])) for ne_node in mesh.neighbors(node_key)]
        for ne in four_nes:
            for info in info_on_pix[ne]:
                assert mesh.has_node((ne[0], ne[1], info['depth'])), "No node_key"
                ind_node = le_nodes[node_key]
                if abs(node_key[2]) > abs(info['depth']):
                    ind_node['near'] = append_element(ind_node, 'near', (ne[0], ne[1], info['depth']))
                else:
                    ind_node['far'] = append_element(ind_node, 'far', (ne[0], ne[1], info['depth']))
    if depth is not None:
        for key, value in info_on_pix.items():
            if depth[key[0], key[1]] != abs(value[0]['depth']):
                value[0]['disp'] = 1. / value[0]['depth']
                depth[key[0], key[1]] = abs(value[0]['depth'])

        return mesh, depth, info_on_pix
    else:
        return mesh

def group_edges(LDI, config, image, remove_conflict_ordinal, spdb=False):

    '''
    (1) add_new_node(G, node) : add "node" to graph "G"
    (2) add_new_edge(G, node_a, node_b) : add edge "node_a--node_b" to graph "G"
    (3) exceed_thre(x, y, thre) : Check if difference between "x" and "y" exceed threshold "thre"
    (4) key_exist(d, k) : Check if key "k' exists in dictionary "d"
    (5) comm_opp_bg(G, x, y) : Check if node "x" and "y" in graph "G" treat the same opposite node as background
    (6) comm_opp_fg(G, x, y) : Check if node "x" and "y" in graph "G" treat the same opposite node as foreground
    '''
    add_new_node = lambda G, node: None if G.has_node(node) else G.add_node(node)
    add_new_edge = lambda G, node_a, node_b: None if G.has_edge(node_a, node_b) else G.add_edge(node_a, node_b)
    exceed_thre = lambda x, y, thre: (abs(x) - abs(y)) > thre
    key_exist = lambda d, k: d.get(k) is not None
    comm_opp_bg = lambda G, x, y: key_exist(G.nodes[x], 'far') and key_exist(G.nodes[y], 'far') and \
                                    not(set(G.nodes[x]['far']).isdisjoint(set(G.nodes[y]['far'])))
    comm_opp_fg = lambda G, x, y: key_exist(G.nodes[x], 'near') and key_exist(G.nodes[y], 'near') and \
                                    not(set(G.nodes[x]['near']).isdisjoint(set(G.nodes[y]['near'])))
    discont_graph = netx.Graph()
    '''
    (A) Skip the pixel at image boundary, we don't want to deal with them.
    (B) Identify discontinuity by the number of its neighbor(degree).
        If the degree < 4(up/right/buttom/left). We will go through following steps:
        (1) Add the discontinuity pixel "node" to graph "discont_graph".
        (2) Find "node"'s cross neighbor(up/right/buttom/left) "ne_node".
            - If the cross neighbor "ne_node" is a discontinuity pixel(degree("ne_node") < 4),
                (a) add it to graph "discont_graph" and build the connection between "ne_node" and "node".
                (b) label its cross neighbor as invalid pixels "inval_diag_candi" to avoid building
                    connection between original discontinuity pixel "node" and "inval_diag_candi".
            - Otherwise, find "ne_node"'s cross neighbors, called diagonal candidate "diag_candi".
                - The "diag_candi" is diagonal to the original discontinuity pixel "node".
                - If "diag_candi" exists, go to step(3).
        (3) A diagonal candidate "diag_candi" will be :
            - added to the "discont_graph" if its degree < 4.
            - connected to the original discontinuity pixel "node" if it satisfied either
                one of following criterion:
                (a) the difference of disparity between "diag_candi" and "node" is smaller than default threshold.
                (b) the "diag_candi" and "node" face the same opposite pixel. (See. function "tear_edges")
                (c) Both of "diag_candi" and "node" must_connect to each other. (See. function "combine_end_node")
    (C) Aggregate each connected part in "discont_graph" into "discont_ccs" (A.K.A. depth edge).
    '''
    for node in LDI.nodes:
        if not(LDI.graph['bord_up'] + 1 <= node[0] <= LDI.graph['bord_down'] - 2 and \
               LDI.graph['bord_left'] + 1 <= node[1] <= LDI.graph['bord_right'] - 2):
            continue
        neighbors = [*LDI.neighbors(node)]
        if len(neighbors) < 4:
            add_new_node(discont_graph, node)
            diag_candi_anc, inval_diag_candi, discont_nes = set(), set(), set()
            for ne_node in neighbors:
                if len([*LDI.neighbors(ne_node)]) < 4:
                    add_new_node(discont_graph, ne_node)
                    add_new_edge(discont_graph, ne_node, node)
                    discont_nes.add(ne_node)
                else:
                    diag_candi_anc.add(ne_node)
            inval_diag_candi = set([inval_diagonal for ne_node in discont_nes for inval_diagonal in LDI.neighbors(ne_node) if \
                                     abs(inval_diagonal[0] - node[0]) < 2 and abs(inval_diagonal[1] - node[1]) < 2])
            for ne_node in diag_candi_anc:
                if ne_node[0] == node[0]:
                    diagonal_xys = [[ne_node[0] + 1, ne_node[1]], [ne_node[0] - 1, ne_node[1]]]
                elif ne_node[1] == node[1]:
                    diagonal_xys = [[ne_node[0], ne_node[1] + 1], [ne_node[0], ne_node[1] - 1]]
                for diag_candi in LDI.neighbors(ne_node):
                    if [diag_candi[0], diag_candi[1]] in diagonal_xys and LDI.degree(diag_candi) < 4:
                        if diag_candi not in inval_diag_candi:
                            if not exceed_thre(1./node[2], 1./diag_candi[2], config['depth_threshold']) or \
                               (comm_opp_bg(LDI, diag_candi, node) and comm_opp_fg(LDI, diag_candi, node)):
                                add_new_node(discont_graph, diag_candi)
                                add_new_edge(discont_graph, diag_candi, node)
                        if key_exist(LDI.nodes[diag_candi], 'must_connect') and node in LDI.nodes[diag_candi]['must_connect'] and \
                            key_exist(LDI.nodes[node], 'must_connect') and diag_candi in LDI.nodes[node]['must_connect']:
                            add_new_node(discont_graph, diag_candi)
                            add_new_edge(discont_graph, diag_candi, node)
    if spdb == True:
        import pdb; pdb.set_trace()
    discont_ccs = [*netx.connected_components(discont_graph)]
    '''
    In some corner case, a depth edge "discont_cc" will contain both
    foreground(FG) and background(BG) pixels. This violate the assumption that
    a depth edge can only composite by one type of pixel(FG or BG).
    We need to further divide this depth edge into several sub-part so that the
    assumption is satisfied.
    (A) A depth edge is invalid if both of its "far_flag"(BG) and
        "near_flag"(FG) are True.
    (B) If the depth edge is invalid, we need to do:
        (1) Find the role("oridinal") of each pixel on the depth edge.
            "-1" --> Its opposite pixels has smaller depth(near) than it.
                     It is a backgorund pixel.
            "+1" --> Its opposite pixels has larger depth(far) than it.
                     It is a foregorund pixel.
            "0"  --> Some of opposite pixels has larger depth(far) than it,
                     and some has smaller pixel than it.
                     It is an ambiguous pixel.
        (2) For each pixel "discont_node", check if its neigbhors' roles are consistent.
            - If not, break the connection between the neighbor "ne_node" that has a role
              different from "discont_node".
            - If yes, remove all the role that are inconsistent to its neighbors "ne_node".
        (3) Connected component analysis to re-identified those divided depth edge.
    (C) Aggregate each connected part in "discont_graph" into "discont_ccs" (A.K.A. depth edge).
    '''
    if remove_conflict_ordinal:
        new_discont_ccs = []
        num_new_cc = 0
        for edge_id, discont_cc in enumerate(discont_ccs):
            near_flag = False
            far_flag = False
            for discont_node in discont_cc:
                near_flag = True if key_exist(LDI.nodes[discont_node], 'far') else near_flag
                far_flag = True if key_exist(LDI.nodes[discont_node], 'near') else far_flag
                if far_flag and near_flag:
                    break
            if far_flag and near_flag:
                for discont_node in discont_cc:
                    discont_graph.nodes[discont_node]['ordinal'] = \
                        np.array([key_exist(LDI.nodes[discont_node], 'far'),
                                  key_exist(LDI.nodes[discont_node], 'near')]) * \
                        np.array([-1, 1])
                    discont_graph.nodes[discont_node]['ordinal'] = \
                        np.sum(discont_graph.nodes[discont_node]['ordinal'])
                remove_nodes, remove_edges = [], []
                for discont_node in discont_cc:
                    ordinal_relation = np.sum([discont_graph.nodes[xx]['ordinal'] \
                                               for xx in discont_graph.neighbors(discont_node)])
                    near_side = discont_graph.nodes[discont_node]['ordinal'] <= 0
                    if abs(ordinal_relation) < len([*discont_graph.neighbors(discont_node)]):
                        remove_nodes.append(discont_node)
                        for ne_node in discont_graph.neighbors(discont_node):
                            remove_flag = (near_side and not(key_exist(LDI.nodes[ne_node], 'far'))) or \
                                          (not near_side and not(key_exist(LDI.nodes[ne_node], 'near')))
                            remove_edges += [(discont_node, ne_node)] if remove_flag else []
                    else:
                        if near_side and key_exist(LDI.nodes[discont_node], 'near'):
                            LDI.nodes[discont_node].pop('near')
                        elif not(near_side) and key_exist(LDI.nodes[discont_node], 'far'):
                            LDI.nodes[discont_node].pop('far')
                discont_graph.remove_edges_from(remove_edges)
                sub_mesh = discont_graph.subgraph(list(discont_cc)).copy()
                sub_discont_ccs = [*netx.connected_components(sub_mesh)]
                is_redun_near = lambda xx: len(xx) == 1 and xx[0] in remove_nodes and key_exist(LDI.nodes[xx[0]], 'far')
                for sub_discont_cc in sub_discont_ccs:
                    if is_redun_near(list(sub_discont_cc)):
                        LDI.nodes[list(sub_discont_cc)[0]].pop('far')
                    new_discont_ccs.append(sub_discont_cc)
            else:
                new_discont_ccs.append(discont_cc)
        discont_ccs = new_discont_ccs
        new_discont_ccs = None
    if spdb == True:
        import pdb; pdb.set_trace()

    for edge_id, edge_cc in enumerate(discont_ccs):
        for node in edge_cc:
            LDI.nodes[node]['edge_id'] = edge_id

    return discont_ccs, LDI, discont_graph

def combine_end_node(mesh, edge_mesh, edge_ccs, depth):
    import collections
    mesh_nodes = mesh.nodes
    connect_dict = dict()
    for valid_edge_id, valid_edge_cc in enumerate(edge_ccs):
        connect_info = []
        for valid_edge_node in valid_edge_cc:
            single_connect = set()
            for ne_node in mesh.neighbors(valid_edge_node):
                if mesh_nodes[ne_node].get('far') is not None:
                    for fn in mesh_nodes[ne_node].get('far'):
                        if mesh.has_node(fn) and mesh_nodes[fn].get('edge_id') is not None:
                            single_connect.add(mesh_nodes[fn]['edge_id'])
                if mesh_nodes[ne_node].get('near') is not None:
                    for fn in mesh_nodes[ne_node].get('near'):
                        if mesh.has_node(fn) and mesh_nodes[fn].get('edge_id') is not None:
                            single_connect.add(mesh_nodes[fn]['edge_id'])
            connect_info.extend([*single_connect])
        connect_dict[valid_edge_id] = collections.Counter(connect_info)

    end_maps = np.zeros((mesh.graph['H'], mesh.graph['W']))
    edge_maps = np.zeros((mesh.graph['H'], mesh.graph['W'])) - 1
    for valid_edge_id, valid_edge_cc in enumerate(edge_ccs):
        for valid_edge_node in valid_edge_cc:
            edge_maps[valid_edge_node[0], valid_edge_node[1]] = valid_edge_id
            if len([*edge_mesh.neighbors(valid_edge_node)]) == 1:
                num_ne = 1
                if num_ne == 1:
                    end_maps[valid_edge_node[0], valid_edge_node[1]] = valid_edge_node[2]
    nxs, nys = np.where(end_maps != 0)
    invalid_nodes = set()
    for nx, ny in zip(nxs, nys):
        if mesh.has_node((nx, ny, end_maps[nx, ny])) is False:
            invalid_nodes.add((nx, ny))
            continue
        four_nes = [xx for xx in [(nx - 1, ny), (nx + 1, ny), (nx, ny - 1), (nx, ny + 1)] \
                        if 0 <= xx[0] < mesh.graph['H'] and 0 <= xx[1] < mesh.graph['W'] and \
                        end_maps[xx[0], xx[1]] != 0]
        mesh_nes = [*mesh.neighbors((nx, ny, end_maps[nx, ny]))]
        remove_num = 0
        for fne in four_nes:
            if (fne[0], fne[1], end_maps[fne[0], fne[1]]) in mesh_nes:
                remove_num += 1
        if remove_num == len(four_nes):
            invalid_nodes.add((nx, ny))
    for invalid_node in invalid_nodes:
        end_maps[invalid_node[0], invalid_node[1]] = 0

    nxs, nys = np.where(end_maps != 0)
    invalid_nodes = set()
    for nx, ny in zip(nxs, nys):
        if mesh_nodes[(nx, ny, end_maps[nx, ny])].get('edge_id') is None:
            continue
        else:
            self_id = mesh_nodes[(nx, ny, end_maps[nx, ny])].get('edge_id')
            self_connect = connect_dict[self_id] if connect_dict.get(self_id) is not None else dict()
        four_nes = [xx for xx in [(nx - 1, ny), (nx + 1, ny), (nx, ny - 1), (nx, ny + 1)] \
                        if 0 <= xx[0] < mesh.graph['H'] and 0 <= xx[1] < mesh.graph['W'] and \
                        end_maps[xx[0], xx[1]] != 0]
        for fne in four_nes:
            if mesh_nodes[(fne[0], fne[1], end_maps[fne[0], fne[1]])].get('edge_id') is None:
                continue
            else:
                ne_id = mesh_nodes[(fne[0], fne[1], end_maps[fne[0], fne[1]])]['edge_id']
                if self_connect.get(ne_id) is None or self_connect.get(ne_id) == 1:
                    continue
                else:
                    invalid_nodes.add((nx, ny))
    for invalid_node in invalid_nodes:
        end_maps[invalid_node[0], invalid_node[1]] = 0
    nxs, nys = np.where(end_maps != 0)
    invalid_nodes = set()
    for nx, ny in zip(nxs, nys):
        four_nes = [xx for xx in [(nx - 1, ny), (nx + 1, ny), (nx, ny - 1), (nx, ny + 1)] \
                        if 0 <= xx[0] < mesh.graph['H'] and 0 <= xx[1] < mesh.graph['W'] and \
                        end_maps[xx[0], xx[1]] != 0]
        for fne in four_nes:
            if mesh.has_node((fne[0], fne[1], end_maps[fne[0], fne[1]])):
                node_a, node_b = (fne[0], fne[1], end_maps[fne[0], fne[1]]), (nx, ny, end_maps[nx, ny])
                mesh.add_edge(node_a, node_b)
                mesh_nodes[node_b]['must_connect'] = set() if mesh_nodes[node_b].get('must_connect') is None else mesh_nodes[node_b]['must_connect']
                mesh_nodes[node_b]['must_connect'].add(node_a)
                mesh_nodes[node_b]['must_connect'] |= set([xx for xx in [*edge_mesh.neighbors(node_a)] if \
                                                            (xx[0] - node_b[0]) < 2 and (xx[1] - node_b[1]) < 2])
                mesh_nodes[node_a]['must_connect'] = set() if mesh_nodes[node_a].get('must_connect') is None else mesh_nodes[node_a]['must_connect']
                mesh_nodes[node_a]['must_connect'].add(node_b)
                mesh_nodes[node_a]['must_connect'] |= set([xx for xx in [*edge_mesh.neighbors(node_b)] if \
                                                            (xx[0] - node_a[0]) < 2 and (xx[1] - node_a[1]) < 2])
                invalid_nodes.add((nx, ny))
    for invalid_node in invalid_nodes:
        end_maps[invalid_node[0], invalid_node[1]] = 0

    return mesh

def remove_redundant_edge(mesh, edge_mesh, edge_ccs, info_on_pix, config, redundant_number=1000, invalid=False, spdb=False):
    point_to_amount = {}
    point_to_id = {}
    end_maps = np.zeros((mesh.graph['H'], mesh.graph['W'])) - 1
    for valid_edge_id, valid_edge_cc in enumerate(edge_ccs):
        for valid_edge_node in valid_edge_cc:
            point_to_amount[valid_edge_node] = len(valid_edge_cc)
            point_to_id[valid_edge_node] = valid_edge_id
            if edge_mesh.has_node(valid_edge_node) is True:
                if len([*edge_mesh.neighbors(valid_edge_node)]) == 1:
                    end_maps[valid_edge_node[0], valid_edge_node[1]] = valid_edge_id
    nxs, nys = np.where(end_maps > -1)
    point_to_adjoint = {}
    for nx, ny in zip(nxs, nys):
        adjoint_edges = set([end_maps[x, y] for x, y in [(nx + 1, ny), (nx - 1, ny), (nx, ny + 1), (nx, ny - 1)] if end_maps[x, y] != -1])
        point_to_adjoint[end_maps[nx, ny]] = (point_to_adjoint[end_maps[nx, ny]] | adjoint_edges) if point_to_adjoint.get(end_maps[nx, ny]) is not None else adjoint_edges
    valid_edge_ccs = filter_edge(mesh, edge_ccs, config, invalid=invalid)
    edge_canvas = np.zeros((mesh.graph['H'], mesh.graph['W'])) - 1
    for valid_edge_id, valid_edge_cc in enumerate(valid_edge_ccs):
        for valid_edge_node in valid_edge_cc:
            edge_canvas[valid_edge_node[0], valid_edge_node[1]] = valid_edge_id
    if spdb is True:
        plt.imshow(edge_canvas); plt.show()
        import pdb; pdb.set_trace()
    for valid_edge_id, valid_edge_cc in enumerate(valid_edge_ccs):
        end_number = 0
        four_end_number = 0
        eight_end_number = 0
        db_eight_end_number = 0
        if len(valid_edge_cc) > redundant_number:
            continue
        for valid_edge_node in valid_edge_cc:
            if len([*edge_mesh.neighbors(valid_edge_node)]) == 3:
                break
            elif len([*edge_mesh.neighbors(valid_edge_node)]) == 1:
                hx, hy, hz = valid_edge_node
                if invalid is False:
                    eight_nes = [(x, y) for x, y in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1),
                                                     (hx + 1, hy + 1), (hx - 1, hy - 1), (hx - 1, hy + 1), (hx + 1, hy - 1)] \
                                            if info_on_pix.get((x, y)) is not None and edge_canvas[x, y] != -1 and edge_canvas[x, y] != valid_edge_id]
                    if len(eight_nes) == 0:
                        end_number += 1
                if invalid is True:
                    four_nes = []; eight_nes = []; db_eight_nes = []
                    four_nes = [(x, y) for x, y in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1)] \
                                            if info_on_pix.get((x, y)) is not None and edge_canvas[x, y] != -1 and edge_canvas[x, y] != valid_edge_id]
                    eight_nes = [(x, y) for x, y in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1), \
                                                    (hx + 1, hy + 1), (hx - 1, hy - 1), (hx - 1, hy + 1), (hx + 1, hy - 1)] \
                                            if info_on_pix.get((x, y)) is not None and edge_canvas[x, y] != -1 and edge_canvas[x, y] != valid_edge_id]
                    db_eight_nes = [(x, y) for x in range(hx - 2, hx + 3) for y in range(hy - 2, hy + 3) \
                                    if info_on_pix.get((x, y)) is not None and edge_canvas[x, y] != -1 and edge_canvas[x, y] != valid_edge_id and (x, y) != (hx, hy)]
                    if len(four_nes) == 0 or len(eight_nes) == 0:
                        end_number += 1
                        if len(four_nes) == 0:
                            four_end_number += 1
                        if len(eight_nes) == 0:
                            eight_end_number += 1
                        if len(db_eight_nes) == 0:
                            db_eight_end_number += 1
            elif len([*edge_mesh.neighbors(valid_edge_node)]) == 0:
                hx, hy, hz = valid_edge_node
                four_nes = [(x, y, info_on_pix[(x, y)][0]['depth']) for x, y in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1)] \
                                if info_on_pix.get((x, y)) is not None and \
                                    mesh.has_edge(valid_edge_node, (x, y, info_on_pix[(x, y)][0]['depth'])) is False]
                for ne in four_nes:
                    try:
                        if invalid is True or (point_to_amount.get(ne) is None or point_to_amount[ne] < redundant_number) or \
                            point_to_id[ne] in point_to_adjoint.get(point_to_id[valid_edge_node], set()):
                            mesh.add_edge(valid_edge_node, ne)
                    except:
                        import pdb; pdb.set_trace()
        if (invalid is not True and end_number >= 1) or (invalid is True and end_number >= 2 and eight_end_number >= 1 and db_eight_end_number >= 1):
            for valid_edge_node in valid_edge_cc:
                hx, hy, _ = valid_edge_node
                four_nes = [(x, y, info_on_pix[(x, y)][0]['depth']) for x, y in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1)] \
                                if info_on_pix.get((x, y)) is not None and \
                                    mesh.has_edge(valid_edge_node, (x, y, info_on_pix[(x, y)][0]['depth'])) is False and \
                                    (edge_canvas[x, y] == -1 or edge_canvas[x, y] == valid_edge_id)]
                for ne in four_nes:
                    if invalid is True or (point_to_amount.get(ne) is None or point_to_amount[ne] < redundant_number) or \
                        point_to_id[ne] in point_to_adjoint.get(point_to_id[valid_edge_node], set()):
                        mesh.add_edge(valid_edge_node, ne)

    return mesh

def judge_dangle(mark, mesh, node):
    if not (1 <= node[0] < mesh.graph['H']-1) or not(1 <= node[1] < mesh.graph['W']-1):
        return mark
    mesh_neighbors = [*mesh.neighbors(node)]
    mesh_neighbors = [xx for xx in mesh_neighbors if 0 < xx[0] < mesh.graph['H'] - 1 and 0 < xx[1] < mesh.graph['W'] - 1]
    if len(mesh_neighbors) >= 3:
        return mark
    elif len(mesh_neighbors) <= 1:
        mark[node[0], node[1]] = (len(mesh_neighbors) + 1)
    else:
        dan_ne_node_a = mesh_neighbors[0]
        dan_ne_node_b = mesh_neighbors[1]
        if abs(dan_ne_node_a[0] - dan_ne_node_b[0]) > 1 or \
            abs(dan_ne_node_a[1] - dan_ne_node_b[1]) > 1:
            mark[node[0], node[1]] = 3

    return mark

def remove_dangling(mesh, edge_ccs, edge_mesh, info_on_pix, image, depth, config):

    tmp_edge_ccs = copy.deepcopy(edge_ccs)
    for edge_cc_id, valid_edge_cc in enumerate(tmp_edge_ccs):
        if len(valid_edge_cc) > 1 or len(valid_edge_cc) == 0:
            continue
        single_edge_node = [*valid_edge_cc][0]
        hx, hy, hz = single_edge_node
        eight_nes = set([(x, y, info_on_pix[(x, y)][0]['depth']) for x, y in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1),
                         (hx + 1, hy + 1), (hx - 1, hy - 1), (hx - 1, hy + 1), (hx + 1, hy - 1)] \
                         if info_on_pix.get((x, y)) is not None])
        four_nes = [(x, y, info_on_pix[(x, y)][0]['depth']) for x, y in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1)] \
                    if info_on_pix.get((x, y)) is not None]
        sub_mesh = mesh.subgraph(eight_nes).copy()
        ccs = netx.connected_components(sub_mesh)
        four_ccs = []
        for cc_id, _cc in enumerate(ccs):
            four_ccs.append(set())
            for cc_node in _cc:
                if abs(cc_node[0] - hx) + abs(cc_node[1] - hy) < 2:
                    four_ccs[cc_id].add(cc_node)
        largest_cc = sorted(four_ccs, key=lambda x: (len(x), -np.sum([abs(xx[2] - hz) for xx in x])))[-1]
        if len(largest_cc) < 2:
            for ne in four_nes:
                mesh.add_edge(single_edge_node, ne)
        else:
            mesh.remove_edges_from([(single_edge_node, ne) for ne in mesh.neighbors(single_edge_node)])
            new_depth = np.mean([xx[2] for xx in largest_cc])
            info_on_pix[(hx, hy)][0]['depth'] = new_depth
            info_on_pix[(hx, hy)][0]['disp'] = 1./new_depth
            new_node = (hx, hy, new_depth)
            mesh = refresh_node(single_edge_node, mesh.node[single_edge_node], new_node, dict(), mesh)
            edge_ccs[edge_cc_id] = set([new_node])
            for ne in largest_cc:
                mesh.add_edge(new_node, ne)

    mark = np.zeros((mesh.graph['H'], mesh.graph['W']))
    for edge_idx, edge_cc in enumerate(edge_ccs):
        for edge_node in edge_cc:
            if not (mesh.graph['bord_up'] <= edge_node[0] < mesh.graph['bord_down']-1) or \
               not (mesh.graph['bord_left'] <= edge_node[1] < mesh.graph['bord_right']-1):
                continue
            mesh_neighbors = [*mesh.neighbors(edge_node)]
            mesh_neighbors = [xx for xx in mesh_neighbors \
                                if mesh.graph['bord_up'] < xx[0] < mesh.graph['bord_down'] - 1 and \
                                   mesh.graph['bord_left'] < xx[1] < mesh.graph['bord_right'] - 1]
            if len([*mesh.neighbors(edge_node)]) >= 3:
                continue
            elif len([*mesh.neighbors(edge_node)]) <= 1:
                mark[edge_node[0], edge_node[1]] += (len([*mesh.neighbors(edge_node)]) + 1)
            else:
                dan_ne_node_a = [*mesh.neighbors(edge_node)][0]
                dan_ne_node_b = [*mesh.neighbors(edge_node)][1]
                if abs(dan_ne_node_a[0] - dan_ne_node_b[0]) > 1 or \
                    abs(dan_ne_node_a[1] - dan_ne_node_b[1]) > 1:
                    mark[edge_node[0], edge_node[1]] += 3
    mxs, mys = np.where(mark == 1)
    conn_0_nodes = [(x[0], x[1], info_on_pix[(x[0], x[1])][0]['depth']) for x in zip(mxs, mys) \
                        if mesh.has_node((x[0], x[1], info_on_pix[(x[0], x[1])][0]['depth']))]
    mxs, mys = np.where(mark == 2)
    conn_1_nodes = [(x[0], x[1], info_on_pix[(x[0], x[1])][0]['depth']) for x in zip(mxs, mys) \
                        if mesh.has_node((x[0], x[1], info_on_pix[(x[0], x[1])][0]['depth']))]
    for node in conn_0_nodes:
        hx, hy = node[0], node[1]
        four_nes = [(x, y, info_on_pix[(x, y)][0]['depth']) for x, y in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1)] \
                     if info_on_pix.get((x, y)) is not None]
        re_depth = {'value' : 0, 'count': 0}
        for ne in four_nes:
            mesh.add_edge(node, ne)
            re_depth['value'] += cc_node[2]
            re_depth['count'] += 1.
        re_depth = re_depth['value'] / re_depth['count']
        mapping_dict = {node: (node[0], node[1], re_depth)}
        info_on_pix, mesh, edge_mesh = update_info(mapping_dict, info_on_pix, mesh, edge_mesh)
        depth[node[0], node[1]] = abs(re_depth)
        mark[node[0], node[1]] = 0
    for node in conn_1_nodes:
        hx, hy = node[0], node[1]
        eight_nes = set([(x, y, info_on_pix[(x, y)][0]['depth']) for x, y in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1),
                                                                           (hx + 1, hy + 1), (hx - 1, hy - 1), (hx - 1, hy + 1), (hx + 1, hy - 1)] \
                        if info_on_pix.get((x, y)) is not None])
        self_nes = set([ne2 for ne1 in mesh.neighbors(node) for ne2 in mesh.neighbors(ne1) if ne2 in eight_nes])
        eight_nes = [*(eight_nes - self_nes)]
        sub_mesh = mesh.subgraph(eight_nes).copy()
        ccs = netx.connected_components(sub_mesh)
        largest_cc = sorted(ccs, key=lambda x: (len(x), -np.sum([abs(xx[0] - node[0]) + abs(xx[1] - node[1]) for xx in x])))[-1]

        mesh.remove_edges_from([(xx, node) for xx in mesh.neighbors(node)])
        re_depth = {'value' : 0, 'count': 0}
        for cc_node in largest_cc:
            if cc_node[0] == node[0] and cc_node[1] == node[1]:
                continue
            re_depth['value'] += cc_node[2]
            re_depth['count'] += 1.
            if abs(cc_node[0] - node[0]) + abs(cc_node[1] - node[1]) < 2:
                mesh.add_edge(cc_node, node)
        try:
            re_depth = re_depth['value'] / re_depth['count']
        except:
            re_depth = node[2]
        renode = (node[0], node[1], re_depth)
        mapping_dict = {node: renode}
        info_on_pix, mesh, edge_mesh = update_info(mapping_dict, info_on_pix, mesh, edge_mesh)
        depth[node[0], node[1]] = abs(re_depth)
        mark[node[0], node[1]] = 0
        edge_mesh, mesh, mark, info_on_pix = recursive_add_edge(edge_mesh, mesh, info_on_pix, renode, mark)
    mxs, mys = np.where(mark == 3)
    conn_2_nodes = [(x[0], x[1], info_on_pix[(x[0], x[1])][0]['depth']) for x in zip(mxs, mys) \
                        if mesh.has_node((x[0], x[1], info_on_pix[(x[0], x[1])][0]['depth'])) and \
                            mesh.degree((x[0], x[1], info_on_pix[(x[0], x[1])][0]['depth'])) == 2]
    sub_mesh = mesh.subgraph(conn_2_nodes).copy()
    ccs = netx.connected_components(sub_mesh)
    for cc in ccs:
        candidate_nodes = [xx for xx in cc if sub_mesh.degree(xx) == 1]
        for node in candidate_nodes:
            if mesh.has_node(node) is False:
                continue
            ne_node = [xx for xx in mesh.neighbors(node) if xx not in cc][0]
            hx, hy = node[0], node[1]
            eight_nes = set([(x, y, info_on_pix[(x, y)][0]['depth']) for x, y in [(hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1),
                                                                            (hx + 1, hy + 1), (hx - 1, hy - 1), (hx - 1, hy + 1), (hx + 1, hy - 1)] \
                              if info_on_pix.get((x, y)) is not None and (x, y, info_on_pix[(x, y)][0]['depth']) not in cc])
            ne_sub_mesh = mesh.subgraph(eight_nes).copy()
            ne_ccs = netx.connected_components(ne_sub_mesh)
            try:
                ne_cc = [ne_cc for ne_cc in ne_ccs if ne_node in ne_cc][0]
            except:
                import pdb; pdb.set_trace()
            largest_cc = [xx for xx in ne_cc if abs(xx[0] - node[0]) + abs(xx[1] - node[1]) == 1]
            mesh.remove_edges_from([(xx, node) for xx in mesh.neighbors(node)])
            re_depth = {'value' : 0, 'count': 0}
            for cc_node in largest_cc:
                re_depth['value'] += cc_node[2]
                re_depth['count'] += 1.
                mesh.add_edge(cc_node, node)
            try:
                re_depth = re_depth['value'] / re_depth['count']
            except:
                re_depth = node[2]
            renode = (node[0], node[1], re_depth)
            mapping_dict = {node: renode}
            info_on_pix, mesh, edge_mesh = update_info(mapping_dict, info_on_pix, mesh, edge_mesh)
            depth[node[0], node[1]] = abs(re_depth)
            mark[node[0], node[1]] = 0
            edge_mesh, mesh, mark, info_on_pix = recursive_add_edge(edge_mesh, mesh, info_on_pix, renode, mark)
            break
        if len(cc) == 1:
            node = [node for node in cc][0]
            hx, hy = node[0], node[1]
            nine_nes = set([(x, y, info_on_pix[(x, y)][0]['depth']) for x, y in [(hx, hy), (hx + 1, hy), (hx - 1, hy), (hx, hy + 1), (hx, hy - 1),
                                                                                  (hx + 1, hy + 1), (hx - 1, hy - 1), (hx - 1, hy + 1), (hx + 1, hy - 1)] \
                                if info_on_pix.get((x, y)) is not None and mesh.has_node((x, y, info_on_pix[(x, y)][0]['depth']))])
            ne_sub_mesh = mesh.subgraph(nine_nes).copy()
            ne_ccs = netx.connected_components(ne_sub_mesh)
            for ne_cc in ne_ccs:
                if node in ne_cc:
                    re_depth = {'value' : 0, 'count': 0}
                    for ne in ne_cc:
                        if abs(ne[0] - node[0]) + abs(ne[1] - node[1]) == 1:
                            mesh.add_edge(node, ne)
                            re_depth['value'] += ne[2]
                            re_depth['count'] += 1.
                    re_depth = re_depth['value'] / re_depth['count']
                    mapping_dict = {node: (node[0], node[1], re_depth)}
                    info_on_pix, mesh, edge_mesh = update_info(mapping_dict, info_on_pix, mesh, edge_mesh)
                    depth[node[0], node[1]] = abs(re_depth)
                    mark[node[0], node[1]] = 0


    return mesh, info_on_pix, edge_mesh, depth, mark

def context_and_holes(mesh, edge_ccs, config, specific_edge_id, specific_edge_loc, depth_feat_model,
                      connect_points_ccs=None, inpaint_iter=0, filter_edge=False, vis_edge_id=None):
    edge_maps = np.zeros((mesh.graph['H'], mesh.graph['W'])) - 1
    mask_info = {}
    for edge_id, edge_cc in enumerate(edge_ccs):
        for edge_node in edge_cc:
            edge_maps[edge_node[0], edge_node[1]] = edge_id

    context_ccs = [set() for x in range(len(edge_ccs))]
    extend_context_ccs = [set() for x in range(len(edge_ccs))]
    extend_erode_context_ccs = [set() for x in range(len(edge_ccs))]
    extend_edge_ccs = [set() for x in range(len(edge_ccs))]
    accomp_extend_context_ccs = [set() for x in range(len(edge_ccs))]
    erode_context_ccs = [set() for x in range(len(edge_ccs))]
    broken_mask_ccs = [set() for x in range(len(edge_ccs))]
    invalid_extend_edge_ccs = [set() for x in range(len(edge_ccs))]
    intouched_ccs = [set() for x in range(len(edge_ccs))]
    redundant_ccs = [set() for x in range(len(edge_ccs))]
    if inpaint_iter == 0:
        background_thickness = config['background_thickness']
        context_thickness = config['context_thickness']
    else:
        background_thickness = config['background_thickness_2']
        context_thickness = config['context_thickness_2']

    mesh_nodes = mesh.nodes
    for edge_id, edge_cc in enumerate(edge_ccs):
        if context_thickness == 0 or (len(specific_edge_id) > 0 and edge_id not in specific_edge_id):
            continue
        edge_group = {}
        for edge_node in edge_cc:
            far_nodes = mesh_nodes[edge_node].get('far')
            if far_nodes is None:
                continue
            for far_node in far_nodes:
                if far_node in edge_cc:
                    continue
                context_ccs[edge_id].add(far_node)
                if mesh_nodes[far_node].get('edge_id') is not None:
                    if edge_group.get(mesh_nodes[far_node]['edge_id']) is None:
                        edge_group[mesh_nodes[far_node]['edge_id']] = set()
                    edge_group[mesh_nodes[far_node]['edge_id']].add(far_node)
        if len(edge_cc) > 2:
            for edge_key in [*edge_group.keys()]:
                if len(edge_group[edge_key]) == 1:
                    context_ccs[edge_id].remove([*edge_group[edge_key]][0])
    for edge_id, edge_cc in enumerate(edge_ccs):
        if inpaint_iter != 0:
            continue
        tmp_intouched_nodes = set()
        for edge_node in edge_cc:
            raw_intouched_nodes = set(mesh_nodes[edge_node].get('near')) if mesh_nodes[edge_node].get('near') is not None else set()
            tmp_intouched_nodes |= set([xx for xx in raw_intouched_nodes if mesh_nodes[xx].get('edge_id') is not None and \
                                                                         len(context_ccs[mesh_nodes[xx].get('edge_id')]) > 0])
        intouched_ccs[edge_id] |= tmp_intouched_nodes
        tmp_intouched_nodes = None
    mask_ccs = copy.deepcopy(edge_ccs)
    forbidden_len = 3
    forbidden_map = np.ones((mesh.graph['H'] - forbidden_len, mesh.graph['W'] - forbidden_len))
    forbidden_map = np.pad(forbidden_map, ((forbidden_len, forbidden_len), (forbidden_len, forbidden_len)), mode='constant').astype(np.bool)
    cur_tmp_mask_map = np.zeros_like(forbidden_map).astype(np.bool)
    passive_background = 10 if 10 is not None else background_thickness
    passive_context = 1 if 1 is not None else context_thickness

    for edge_id, edge_cc in enumerate(edge_ccs):
        cur_mask_cc = None; cur_mask_cc = []
        cur_context_cc = None; cur_context_cc = []
        cur_accomp_near_cc = None; cur_accomp_near_cc = []
        cur_invalid_extend_edge_cc = None; cur_invalid_extend_edge_cc = []
        cur_comp_far_cc = None; cur_comp_far_cc = []
        tmp_erode = []
        if len(context_ccs[edge_id]) == 0 or (len(specific_edge_id) > 0 and edge_id not in specific_edge_id):
            continue
        for i in range(max(background_thickness, context_thickness)):
            cur_tmp_mask_map.fill(False)
            if i == 0:
                tmp_mask_nodes = copy.deepcopy(mask_ccs[edge_id])
                tmp_intersect_nodes = []
                tmp_intersect_context_nodes = []
                mask_map = np.zeros((mesh.graph['H'], mesh.graph['W']), dtype=np.bool)
                context_depth = np.zeros((mesh.graph['H'], mesh.graph['W']))
                comp_cnt_depth = np.zeros((mesh.graph['H'], mesh.graph['W']))
                connect_map = np.zeros((mesh.graph['H'], mesh.graph['W']))
                for node in tmp_mask_nodes:
                    mask_map[node[0], node[1]] = True
                    depth_count = 0
                    if mesh_nodes[node].get('far') is not None:
                        for comp_cnt_node in mesh_nodes[node]['far']:
                            comp_cnt_depth[node[0], node[1]] += abs(comp_cnt_node[2])
                            depth_count += 1
                    if depth_count > 0:
                        comp_cnt_depth[node[0], node[1]] = comp_cnt_depth[node[0], node[1]] / depth_count
                    connect_node = []
                    if mesh_nodes[node].get('connect_point_id') is not None:
                        connect_node.append(mesh_nodes[node]['connect_point_id'])
                    connect_point_id = np.bincount(connect_node).argmax() if len(connect_node) > 0 else -1
                    if connect_point_id > -1 and connect_points_ccs is not None:
                        for xx in connect_points_ccs[connect_point_id]:
                            if connect_map[xx[0], xx[1]] == 0:
                                connect_map[xx[0], xx[1]] = xx[2]
                    if mesh_nodes[node].get('connect_point_exception') is not None:
                        for xx in mesh_nodes[node]['connect_point_exception']:
                            if connect_map[xx[0], xx[1]] == 0:
                                connect_map[xx[0], xx[1]] = xx[2]
                tmp_context_nodes = [*context_ccs[edge_id]]
                tmp_erode.append([*context_ccs[edge_id]])
                context_map = np.zeros((mesh.graph['H'], mesh.graph['W']), dtype=np.bool)
                if (context_map.astype(np.uint8) * mask_map.astype(np.uint8)).max() > 0:
                    import pdb; pdb.set_trace()
                for node in tmp_context_nodes:
                    context_map[node[0], node[1]] = True
                    context_depth[node[0], node[1]] = node[2]
                context_map[mask_map == True] = False
                if (context_map.astype(np.uint8) * mask_map.astype(np.uint8)).max() > 0:
                    import pdb; pdb.set_trace()
                tmp_intouched_nodes = [*intouched_ccs[edge_id]]
                intouched_map = np.zeros((mesh.graph['H'], mesh.graph['W']), dtype=np.bool)
                for node in tmp_intouched_nodes: intouched_map[node[0], node[1]] = True
                intouched_map[mask_map == True] = False
                tmp_redundant_nodes = set()
                tmp_noncont_nodes = set()
                noncont_map = np.zeros((mesh.graph['H'], mesh.graph['W']), dtype=np.bool)
                intersect_map = np.zeros((mesh.graph['H'], mesh.graph['W']), dtype=np.bool)
                intersect_context_map = np.zeros((mesh.graph['H'], mesh.graph['W']), dtype=np.bool)
            if i > passive_background and inpaint_iter == 0:
                new_tmp_intersect_nodes = None
                new_tmp_intersect_nodes = []
                for node in tmp_intersect_nodes:
                    nes = mesh.neighbors(node)
                    for ne in nes:
                        if bool(context_map[ne[0], ne[1]]) is False and \
                        bool(mask_map[ne[0], ne[1]]) is False and \
                        bool(forbidden_map[ne[0], ne[1]]) is True and \
                        bool(intouched_map[ne[0], ne[1]]) is False and\
                        bool(intersect_map[ne[0], ne[1]]) is False and\
                        bool(intersect_context_map[ne[0], ne[1]]) is False:
                            break_flag = False
                            if (i - passive_background) % 2 == 0 and (i - passive_background) % 8 != 0:
                                four_nes = [xx for xx in[[ne[0] - 1, ne[1]], [ne[0] + 1, ne[1]], [ne[0], ne[1] - 1], [ne[0], ne[1] + 1]] \
                                                if 0 <= xx[0] < mesh.graph['H'] and 0 <= xx[1] < mesh.graph['W']]
                                for fne in four_nes:
                                    if bool(mask_map[fne[0], fne[1]]) is True:
                                        break_flag = True
                                        break
                                if break_flag is True:
                                    continue
                            intersect_map[ne[0], ne[1]] = True
                            new_tmp_intersect_nodes.append(ne)
                tmp_intersect_nodes = None
                tmp_intersect_nodes = new_tmp_intersect_nodes

            if i > passive_context and inpaint_iter == 1:
                new_tmp_intersect_context_nodes = None
                new_tmp_intersect_context_nodes = []
                for node in tmp_intersect_context_nodes:
                    nes = mesh.neighbors(node)
                    for ne in nes:
                        if bool(context_map[ne[0], ne[1]]) is False and \
                        bool(mask_map[ne[0], ne[1]]) is False and \
                        bool(forbidden_map[ne[0], ne[1]]) is True and \
                        bool(intouched_map[ne[0], ne[1]]) is False and\
                        bool(intersect_map[ne[0], ne[1]]) is False and \
                        bool(intersect_context_map[ne[0], ne[1]]) is False:
                            intersect_context_map[ne[0], ne[1]] = True
                            new_tmp_intersect_context_nodes.append(ne)
                tmp_intersect_context_nodes = None
                tmp_intersect_context_nodes = new_tmp_intersect_context_nodes

            new_tmp_mask_nodes = None
            new_tmp_mask_nodes = []
            for node in tmp_mask_nodes:
                four_nes = {xx:[] for xx in [(node[0] - 1, node[1]), (node[0] + 1, node[1]), (node[0], node[1] - 1), (node[0], node[1] + 1)] if \
                            0 <= xx[0] < connect_map.shape[0] and 0 <= xx[1] < connect_map.shape[1]}
                if inpaint_iter > 0:
                    for ne in four_nes.keys():
                        if connect_map[ne[0], ne[1]] == True:
                            tmp_context_nodes.append((ne[0], ne[1], connect_map[ne[0], ne[1]]))
                            context_map[ne[0], ne[1]] = True
                nes = mesh.neighbors(node)
                if inpaint_iter > 0:
                    for ne in nes: four_nes[(ne[0], ne[1])].append(ne[2])
                    nes = []
                    for kfne, vfnes in four_nes.items(): vfnes.sort(key = lambda xx: abs(xx), reverse=True)
                    for kfne, vfnes in four_nes.items():
                        for vfne in vfnes: nes.append((kfne[0], kfne[1], vfne))
                for ne in nes:
                    if bool(context_map[ne[0], ne[1]]) is False and \
                       bool(mask_map[ne[0], ne[1]]) is False and \
                       bool(forbidden_map[ne[0], ne[1]]) is True and \
                       bool(intouched_map[ne[0], ne[1]]) is False and \
                       bool(intersect_map[ne[0], ne[1]]) is False and \
                       bool(intersect_context_map[ne[0], ne[1]]) is False:
                        if i == passive_background and inpaint_iter == 0:
                            if np.any(context_map[max(ne[0] - 1, 0):min(ne[0] + 2, mesh.graph['H']), max(ne[1] - 1, 0):min(ne[1] + 2, mesh.graph['W'])]) == True:
                                intersect_map[ne[0], ne[1]] = True
                                tmp_intersect_nodes.append(ne)
                                continue
                        if i < background_thickness:
                            if inpaint_iter == 0:
                                cur_mask_cc.append(ne)
                            elif mesh_nodes[ne].get('inpaint_id') == 1:
                                cur_mask_cc.append(ne)
                            else:
                                continue
                            mask_ccs[edge_id].add(ne)
                            if inpaint_iter == 0:
                                if comp_cnt_depth[node[0], node[1]] > 0 and comp_cnt_depth[ne[0], ne[1]] == 0:
                                    comp_cnt_depth[ne[0], ne[1]] = comp_cnt_depth[node[0], node[1]]
                                if mesh_nodes[ne].get('far') is not None:
                                    for comp_far_node in mesh_nodes[ne]['far']:
                                        cur_comp_far_cc.append(comp_far_node)
                                        cur_accomp_near_cc.append(ne)
                                        cur_invalid_extend_edge_cc.append(comp_far_node)
                                if mesh_nodes[ne].get('edge_id') is not None and \
                                    len(context_ccs[mesh_nodes[ne].get('edge_id')]) > 0:
                                    intouched_fars = set(mesh_nodes[ne].get('far')) if mesh_nodes[ne].get('far') is not None else set()
                                    accum_intouched_fars = set(intouched_fars)
                                    for intouched_far in intouched_fars:
                                        accum_intouched_fars |= set([*mesh.neighbors(intouched_far)])
                                    for intouched_far in accum_intouched_fars:
                                        if bool(mask_map[intouched_far[0], intouched_far[1]]) is True or \
                                        bool(context_map[intouched_far[0], intouched_far[1]]) is True:
                                            continue
                                        tmp_redundant_nodes.add(intouched_far)
                                        intouched_map[intouched_far[0], intouched_far[1]] = True
                                if mesh_nodes[ne].get('near') is not None:
                                    intouched_nears = set(mesh_nodes[ne].get('near'))
                                    for intouched_near in intouched_nears:
                                        if bool(mask_map[intouched_near[0], intouched_near[1]]) is True or \
                                        bool(context_map[intouched_near[0], intouched_near[1]]) is True:
                                            continue
                                        tmp_redundant_nodes.add(intouched_near)
                                        intouched_map[intouched_near[0], intouched_near[1]] = True
                        if not (mesh_nodes[ne].get('inpaint_id') != 1 and inpaint_iter == 1):
                            new_tmp_mask_nodes.append(ne)
                            mask_map[ne[0], ne[1]] = True
            tmp_mask_nodes = new_tmp_mask_nodes

            new_tmp_context_nodes = None
            new_tmp_context_nodes = []
            for node in tmp_context_nodes:
                nes = mesh.neighbors(node)
                if inpaint_iter > 0:
                    four_nes = {(node[0] - 1, node[1]):[], (node[0] + 1, node[1]):[], (node[0], node[1] - 1):[], (node[0], node[1] + 1):[]}
                    for ne in nes: four_nes[(ne[0], ne[1])].append(ne[2])
                    nes = []
                    for kfne, vfnes in four_nes.items(): vfnes.sort(key = lambda xx: abs(xx), reverse=True)
                    for kfne, vfnes in four_nes.items():
                        for vfne in vfnes: nes.append((kfne[0], kfne[1], vfne))
                for ne in nes:
                    mask_flag = (bool(mask_map[ne[0], ne[1]]) is False)
                    if bool(context_map[ne[0], ne[1]]) is False and mask_flag and \
                       bool(forbidden_map[ne[0], ne[1]]) is True and bool(noncont_map[ne[0], ne[1]]) is False and \
                       bool(intersect_context_map[ne[0], ne[1]]) is False:
                        if i == passive_context and inpaint_iter == 1:
                            mnes = mesh.neighbors(ne)
                            if any([mask_map[mne[0], mne[1]] == True for mne in mnes]) is True:
                                intersect_context_map[ne[0], ne[1]] = True
                                tmp_intersect_context_nodes.append(ne)
                                continue
                        if False and mesh_nodes[ne].get('near') is not None and mesh_nodes[ne].get('edge_id') != edge_id:
                            noncont_nears = set(mesh_nodes[ne].get('near'))
                            for noncont_near in noncont_nears:
                                if bool(context_map[noncont_near[0], noncont_near[1]]) is False:
                                    tmp_noncont_nodes.add(noncont_near)
                                    noncont_map[noncont_near[0], noncont_near[1]] = True
                        new_tmp_context_nodes.append(ne)
                        context_map[ne[0], ne[1]] = True
                        context_depth[ne[0], ne[1]] = ne[2]
            cur_context_cc.extend(new_tmp_context_nodes)
            tmp_erode.append(new_tmp_context_nodes)
            tmp_context_nodes = None
            tmp_context_nodes = new_tmp_context_nodes
            new_tmp_intouched_nodes = None; new_tmp_intouched_nodes = []

            for node in tmp_intouched_nodes:
                if bool(context_map[node[0], node[1]]) is True or bool(mask_map[node[0], node[1]]) is True:
                    continue
                nes = mesh.neighbors(node)

                for ne in nes:
                    if bool(context_map[ne[0], ne[1]]) is False and \
                       bool(mask_map[ne[0], ne[1]]) is False and \
                       bool(intouched_map[ne[0], ne[1]]) is False and \
                       bool(forbidden_map[ne[0], ne[1]]) is True:
                        new_tmp_intouched_nodes.append(ne)
                        intouched_map[ne[0], ne[1]] = True
            tmp_intouched_nodes = None
            tmp_intouched_nodes = set(new_tmp_intouched_nodes)
            new_tmp_redundant_nodes = None; new_tmp_redundant_nodes = []
            for node in tmp_redundant_nodes:
                if bool(context_map[node[0], node[1]]) is True or \
                   bool(mask_map[node[0], node[1]]) is True:
                    continue
                nes = mesh.neighbors(node)

                for ne in nes:
                    if bool(context_map[ne[0], ne[1]]) is False and \
                       bool(mask_map[ne[0], ne[1]]) is False and \
                       bool(intouched_map[ne[0], ne[1]]) is False and \
                       bool(forbidden_map[ne[0], ne[1]]) is True:
                        new_tmp_redundant_nodes.append(ne)
                        intouched_map[ne[0], ne[1]] = True
            tmp_redundant_nodes = None
            tmp_redundant_nodes = set(new_tmp_redundant_nodes)
            new_tmp_noncont_nodes = None; new_tmp_noncont_nodes = []
            for node in tmp_noncont_nodes:
                if bool(context_map[node[0], node[1]]) is True or \
                   bool(mask_map[node[0], node[1]]) is True:
                    continue
                nes = mesh.neighbors(node)
                rmv_flag = False
                for ne in nes:
                    if bool(context_map[ne[0], ne[1]]) is False and \
                       bool(mask_map[ne[0], ne[1]]) is False and \
                       bool(noncont_map[ne[0], ne[1]]) is False and \
                       bool(forbidden_map[ne[0], ne[1]]) is True:
                        patch_context_map = context_map[max(ne[0] - 1, 0):min(ne[0] + 2, context_map.shape[0]),
                                                        max(ne[1] - 1, 0):min(ne[1] + 2, context_map.shape[1])]
                        if bool(np.any(patch_context_map)) is True:
                            new_tmp_noncont_nodes.append(ne)
                            noncont_map[ne[0], ne[1]] = True
            tmp_noncont_nodes = None
            tmp_noncont_nodes = set(new_tmp_noncont_nodes)
        if inpaint_iter == 0:
            depth_dict = get_depth_from_maps(context_map, mask_map, context_depth, mesh.graph['H'], mesh.graph['W'], log_depth=config['log_depth'])
            mask_size = get_valid_size(depth_dict['mask'])
            mask_size = dilate_valid_size(mask_size, depth_dict['mask'], dilate=[20, 20])
            context_size = get_valid_size(depth_dict['context'])
            context_size = dilate_valid_size(context_size, depth_dict['context'], dilate=[20, 20])
            union_size = size_operation(mask_size, context_size, operation='+')
            depth_dict = depth_inpainting(None, None, None, None, mesh, config, union_size, depth_feat_model, None, given_depth_dict=depth_dict, spdb=False)
            near_depth_map, raw_near_depth_map = np.zeros((mesh.graph['H'], mesh.graph['W'])), np.zeros((mesh.graph['H'], mesh.graph['W']))
            filtered_comp_far_cc, filtered_accomp_near_cc = set(), set()
            for node in cur_accomp_near_cc:
                near_depth_map[node[0], node[1]] = depth_dict['output'][node[0], node[1]]
                raw_near_depth_map[node[0], node[1]] = node[2]
            for node in cur_comp_far_cc:
                four_nes = [xx for xx in [(node[0] - 1, node[1]), (node[0] + 1, node[1]), (node[0], node[1] - 1), (node[0], node[1] + 1)] \
                            if 0 <= xx[0] < mesh.graph['H'] and 0 <= xx[1] < mesh.graph['W'] and \
                            near_depth_map[xx[0], xx[1]] != 0 and \
                            abs(near_depth_map[xx[0], xx[1]]) < abs(node[2])]
                if len(four_nes) > 0:
                    filtered_comp_far_cc.add(node)
                for ne in four_nes:
                    filtered_accomp_near_cc.add((ne[0], ne[1], -abs(raw_near_depth_map[ne[0], ne[1]])))
            cur_comp_far_cc, cur_accomp_near_cc = filtered_comp_far_cc, filtered_accomp_near_cc
        mask_ccs[edge_id] |= set(cur_mask_cc)
        context_ccs[edge_id] |= set(cur_context_cc)
        accomp_extend_context_ccs[edge_id] |= set(cur_accomp_near_cc).intersection(cur_mask_cc)
        extend_edge_ccs[edge_id] |= set(cur_accomp_near_cc).intersection(cur_mask_cc)
        extend_context_ccs[edge_id] |= set(cur_comp_far_cc)
        invalid_extend_edge_ccs[edge_id] |= set(cur_invalid_extend_edge_cc)
        erode_size = [0]
        for tmp in tmp_erode:
            erode_size.append(len(tmp))
            if len(erode_size) > 1:
                erode_size[-1] += erode_size[-2]
        if inpaint_iter == 0:
            tmp_width = config['depth_edge_dilate']
        else:
            tmp_width = 0
        while float(erode_size[tmp_width]) / (erode_size[-1] + 1e-6) > 0.3:
            tmp_width = tmp_width - 1
        try:
            if tmp_width == 0:
                erode_context_ccs[edge_id] = set([])
            else:
                erode_context_ccs[edge_id] = set(reduce(lambda x, y : x + y, [] + tmp_erode[:tmp_width]))
        except:
            import pdb; pdb.set_trace()
        erode_context_cc = copy.deepcopy(erode_context_ccs[edge_id])
        for erode_context_node in erode_context_cc:
            if (inpaint_iter != 0 and (mesh_nodes[erode_context_node].get('inpaint_id') is None or
                                        mesh_nodes[erode_context_node].get('inpaint_id') == 0)):
                erode_context_ccs[edge_id].remove(erode_context_node)
            else:
                context_ccs[edge_id].remove(erode_context_node)
        context_map = np.zeros((mesh.graph['H'], mesh.graph['W']))
        for context_node in context_ccs[edge_id]:
            context_map[context_node[0], context_node[1]] = 1
        extend_context_ccs[edge_id] = extend_context_ccs[edge_id] - mask_ccs[edge_id] - accomp_extend_context_ccs[edge_id]
    if inpaint_iter == 0:
        all_ecnt_cc = set()
        for ecnt_id, ecnt_cc in enumerate(extend_context_ccs):
            constraint_context_ids = set()
            constraint_context_cc = set()
            constraint_erode_context_cc = set()
            tmp_mask_cc = set()
            accum_context_cc = None; accum_context_cc = []
            for ecnt_node in accomp_extend_context_ccs[ecnt_id]:
                if edge_maps[ecnt_node[0], ecnt_node[1]] > -1:
                    constraint_context_ids.add(int(round(edge_maps[ecnt_node[0], ecnt_node[1]])))
            constraint_erode_context_cc = erode_context_ccs[ecnt_id]
            for constraint_context_id in constraint_context_ids:
                constraint_context_cc = constraint_context_cc | context_ccs[constraint_context_id] | erode_context_ccs[constraint_context_id]
                constraint_erode_context_cc = constraint_erode_context_cc | erode_context_ccs[constraint_context_id]
            for i in range(background_thickness):
                if i == 0:
                    tmp_context_nodes = copy.deepcopy(ecnt_cc)
                    tmp_invalid_context_nodes = copy.deepcopy(invalid_extend_edge_ccs[ecnt_id])
                    tmp_mask_nodes = copy.deepcopy(accomp_extend_context_ccs[ecnt_id])
                    tmp_context_map = np.zeros((mesh.graph['H'], mesh.graph['W'])).astype(np.bool)
                    tmp_mask_map = np.zeros((mesh.graph['H'], mesh.graph['W'])).astype(np.bool)
                    tmp_invalid_context_map = np.zeros((mesh.graph['H'], mesh.graph['W'])).astype(np.bool)
                    for node in tmp_mask_nodes:
                        tmp_mask_map[node[0], node[1]] = True
                    for node in context_ccs[ecnt_id]:
                        tmp_context_map[node[0], node[1]] = True
                    for node in erode_context_ccs[ecnt_id]:
                        tmp_context_map[node[0], node[1]] = True
                    for node in extend_context_ccs[ecnt_id]:
                        tmp_context_map[node[0], node[1]] = True
                    for node in invalid_extend_edge_ccs[ecnt_id]:
                        tmp_invalid_context_map[node[0], node[1]] = True
                    init_invalid_context_map = tmp_invalid_context_map.copy()
                    init_context_map = tmp
                    if (tmp_mask_map.astype(np.uint8) * tmp_context_map.astype(np.uint8)).max() > 0:
                        import pdb; pdb.set_trace()
                    if vis_edge_id is not None and ecnt_id == vis_edge_id:
                        f, ((ax1, ax2)) = plt.subplots(1, 2, sharex=True, sharey=True)
                        ax1.imshow(tmp_context_map * 1); ax2.imshow(init_invalid_context_map * 1 + tmp_context_map * 2)
                        plt.show()
                        import pdb; pdb.set_trace()
                else:
                    tmp_context_nodes = new_tmp_context_nodes
                    new_tmp_context_nodes = None
                    tmp_mask_nodes = new_tmp_mask_nodes
                    new_tmp_mask_nodes = None
                    tmp_invalid_context_nodes = new_tmp_invalid_context_nodes
                    new_tmp_invalid_context_nodes = None
                new_tmp_context_nodes = None
                new_tmp_context_nodes = []
                new_tmp_invalid_context_nodes = None
                new_tmp_invalid_context_nodes = []
                new_tmp_mask_nodes = set([])
                for node in tmp_context_nodes:
                    for ne in mesh.neighbors(node):
                        if ne in constraint_context_cc and \
                            bool(tmp_mask_map[ne[0], ne[1]]) is False and \
                            bool(tmp_context_map[ne[0], ne[1]]) is False and \
                            bool(forbidden_map[ne[0], ne[1]]) is True:
                            new_tmp_context_nodes.append(ne)
                            tmp_context_map[ne[0], ne[1]] = True
                accum_context_cc.extend(new_tmp_context_nodes)
                for node in tmp_invalid_context_nodes:
                    for ne in mesh.neighbors(node):
                        if bool(tmp_mask_map[ne[0], ne[1]]) is False and \
                           bool(tmp_context_map[ne[0], ne[1]]) is False and \
                           bool(tmp_invalid_context_map[ne[0], ne[1]]) is False and \
                           bool(forbidden_map[ne[0], ne[1]]) is True:
                            tmp_invalid_context_map[ne[0], ne[1]] = True
                            new_tmp_invalid_context_nodes.append(ne)
                for node in tmp_mask_nodes:
                    for ne in mesh.neighbors(node):
                        if bool(tmp_mask_map[ne[0], ne[1]]) is False and \
                           bool(tmp_context_map[ne[0], ne[1]]) is False and \
                           bool(tmp_invalid_context_map[ne[0], ne[1]]) is False and \
                           bool(forbidden_map[ne[0], ne[1]]) is True:
                            new_tmp_mask_nodes.add(ne)
                            tmp_mask_map[ne[0], ne[1]] = True
            init_invalid_context_map[tmp_context_map] = False
            _, tmp_label_map = cv2.connectedComponents((init_invalid_context_map | tmp_context_map).astype(np.uint8), connectivity=8)
            tmp_label_ids = set(np.unique(tmp_label_map[init_invalid_context_map]))
            if (tmp_mask_map.astype(np.uint8) * tmp_context_map.astype(np.uint8)).max() > 0:
                import pdb; pdb.set_trace()
            if vis_edge_id is not None and ecnt_id == vis_edge_id:
                f, ((ax1, ax2)) = plt.subplots(1, 2, sharex=True, sharey=True)
                ax1.imshow(tmp_label_map); ax2.imshow(init_invalid_context_map * 1 + tmp_context_map * 2)
                plt.show()
                import pdb; pdb.set_trace()
            extend_context_ccs[ecnt_id] |= set(accum_context_cc)
            extend_context_ccs[ecnt_id] = extend_context_ccs[ecnt_id] - mask_ccs[ecnt_id]
            extend_erode_context_ccs[ecnt_id] = extend_context_ccs[ecnt_id] & constraint_erode_context_cc
            extend_context_ccs[ecnt_id] = extend_context_ccs[ecnt_id] - extend_erode_context_ccs[ecnt_id] - erode_context_ccs[ecnt_id]
            tmp_context_cc = context_ccs[ecnt_id] - extend_erode_context_ccs[ecnt_id] - erode_context_ccs[ecnt_id]
            if len(tmp_context_cc) > 0:
                context_ccs[ecnt_id] = tmp_context_cc
            tmp_mask_cc = tmp_mask_cc - context_ccs[ecnt_id] - erode_context_ccs[ecnt_id]
            mask_ccs[ecnt_id] = mask_ccs[ecnt_id] | tmp_mask_cc

    return context_ccs, mask_ccs, broken_mask_ccs, edge_ccs, erode_context_ccs, invalid_extend_edge_ccs, edge_maps, extend_context_ccs, extend_edge_ccs, extend_erode_context_ccs

def DL_inpaint_edge(mesh,
                    info_on_pix,
                    config,
                    image,
                    depth,
                    context_ccs,
                    erode_context_ccs,
                    extend_context_ccs,
                    extend_erode_context_ccs,
                    mask_ccs,
                    broken_mask_ccs,
                    edge_ccs,
                    extend_edge_ccs,
                    init_mask_connect,
                    edge_maps,
                    rgb_model=None,
                    depth_edge_model=None,
                    depth_edge_model_init=None,
                    depth_feat_model=None,
                    specific_edge_id=-1,
                    specific_edge_loc=None,
                    inpaint_iter=0):

    if isinstance(config["gpu_ids"], int) and (config["gpu_ids"] >= 0):
        device = config["gpu_ids"]
    else:
        device = "cpu"

    edge_map = np.zeros_like(depth)
    new_edge_ccs = [set() for _ in range(len(edge_ccs))]
    edge_maps_with_id = edge_maps
    edge_condition = lambda x, m: m.nodes[x].get('far') is not None and len(m.nodes[x].get('far')) > 0
    edge_map = get_map_from_ccs(edge_ccs, mesh.graph['H'], mesh.graph['W'], mesh, edge_condition)
    np_depth, np_image = depth.copy(), image.copy()
    image_c = image.shape[-1]
    image = torch.FloatTensor(image.transpose(2, 0, 1)).unsqueeze(0).to(device)
    if depth.ndim < 3:
        depth = depth[..., None]
    depth = torch.FloatTensor(depth.transpose(2, 0, 1)).unsqueeze(0).to(device)
    mesh.graph['max_edge_id'] = len(edge_ccs)
    connnect_points_ccs = [set() for _ in range(len(edge_ccs))]
    gp_time, tmp_mesh_time, bilateral_time = 0, 0, 0
    edges_infos = dict()
    edges_in_mask = [set() for _ in range(len(edge_ccs))]
    tmp_specific_edge_id = []
    for edge_id, (context_cc, mask_cc, erode_context_cc, extend_context_cc, edge_cc) in enumerate(zip(context_ccs, mask_ccs, erode_context_ccs, extend_context_ccs, edge_ccs)):
        if len(specific_edge_id) > 0:
            if edge_id not in specific_edge_id:
                continue
        if len(context_cc) < 1 or len(mask_cc) < 1:
            continue
        edge_dict = get_edge_from_nodes(context_cc | extend_context_cc, erode_context_cc | extend_erode_context_ccs[edge_id], mask_cc, edge_cc, extend_edge_ccs[edge_id],
                                        mesh.graph['H'], mesh.graph['W'], mesh)
        edge_dict['edge'], end_depth_maps, _ = \
            filter_irrelevant_edge_new(edge_dict['self_edge'], edge_dict['comp_edge'],
                                    edge_map,
                                    edge_maps_with_id,
                                    edge_id,
                                    edge_dict['context'],
                                    edge_dict['depth'], mesh, context_cc | erode_context_cc | extend_context_cc | extend_erode_context_ccs[edge_id], spdb=False)
        if specific_edge_loc is not None and \
            (specific_edge_loc is not None and edge_dict['mask'][specific_edge_loc[0], specific_edge_loc[1]] == 0):
            continue
        mask_size = get_valid_size(edge_dict['mask'])
        mask_size = dilate_valid_size(mask_size, edge_dict['mask'], dilate=[20, 20])
        context_size = get_valid_size(edge_dict['context'])
        context_size = dilate_valid_size(context_size, edge_dict['context'], dilate=[20, 20])
        union_size = size_operation(mask_size, context_size, operation='+')
        patch_edge_dict = dict()
        patch_edge_dict['mask'], patch_edge_dict['context'], patch_edge_dict['rgb'], \
            patch_edge_dict['disp'], patch_edge_dict['edge'] = \
            crop_maps_by_size(union_size, edge_dict['mask'], edge_dict['context'],
                                edge_dict['rgb'], edge_dict['disp'], edge_dict['edge'])
        x_anchor, y_anchor = [union_size['x_min'], union_size['x_max']], [union_size['y_min'], union_size['y_max']]
        tensor_edge_dict = convert2tensor(patch_edge_dict)
        input_edge_feat = torch.cat((tensor_edge_dict['rgb'],
                                        tensor_edge_dict['disp'],
                                        tensor_edge_dict['edge'],
                                        1 - tensor_edge_dict['context'],
                                        tensor_edge_dict['mask']), dim=1)
        if require_depth_edge(patch_edge_dict['edge'], patch_edge_dict['mask']) and inpaint_iter == 0:
            with torch.no_grad():
                depth_edge_output = depth_edge_model.forward_3P(tensor_edge_dict['mask'],
                                                                tensor_edge_dict['context'],
                                                                tensor_edge_dict['rgb'],
                                                                tensor_edge_dict['disp'],
                                                                tensor_edge_dict['edge'],
                                                                unit_length=128,
                                                                cuda=device)
                depth_edge_output = depth_edge_output.cpu()
            tensor_edge_dict['output'] = (depth_edge_output> config['ext_edge_threshold']).float() * tensor_edge_dict['mask'] + tensor_edge_dict['edge']
        else:
            tensor_edge_dict['output'] = tensor_edge_dict['edge']
            depth_edge_output = tensor_edge_dict['edge'] + 0
        patch_edge_dict['output'] = tensor_edge_dict['output'].squeeze().data.cpu().numpy()
        edge_dict['output'] = np.zeros((mesh.graph['H'], mesh.graph['W']))
        edge_dict['output'][union_size['x_min']:union_size['x_max'], union_size['y_min']:union_size['y_max']] = \
            patch_edge_dict['output']
        if require_depth_edge(patch_edge_dict['edge'], patch_edge_dict['mask']) and inpaint_iter == 0:
            if ((depth_edge_output> config['ext_edge_threshold']).float() * tensor_edge_dict['mask']).max() > 0:
                try:
                    edge_dict['fpath_map'], edge_dict['npath_map'], break_flag, npaths, fpaths, invalid_edge_id = \
                        clean_far_edge_new(edge_dict['output'], end_depth_maps, edge_dict['mask'], edge_dict['context'], mesh, info_on_pix, edge_dict['self_edge'], inpaint_iter, config)
                except:
                    import pdb; pdb.set_trace()
                pre_npath_map = edge_dict['npath_map'].copy()
                if config.get('repeat_inpaint_edge') is True:
                    for _ in range(2):
                        tmp_input_edge = ((edge_dict['npath_map'] > -1) + edge_dict['edge']).clip(0, 1)
                        patch_tmp_input_edge = crop_maps_by_size(union_size, tmp_input_edge)[0]
                        tensor_input_edge = torch.FloatTensor(patch_tmp_input_edge)[None, None, ...]
                        depth_edge_output = depth_edge_model.forward_3P(tensor_edge_dict['mask'],
                                                    tensor_edge_dict['context'],
                                                    tensor_edge_dict['rgb'],
                                                    tensor_edge_dict['disp'],
                                                    tensor_input_edge,
                                                    unit_length=128,
                                                    cuda=device)
                        depth_edge_output = depth_edge_output.cpu()
                        depth_edge_output = (depth_edge_output> config['ext_edge_threshold']).float() * tensor_edge_dict['mask'] + tensor_edge_dict['edge']
                        depth_edge_output = depth_edge_output.squeeze().data.cpu().numpy()
                        full_depth_edge_output = np.zeros((mesh.graph['H'], mesh.graph['W']))
                        full_depth_edge_output[union_size['x_min']:union_size['x_max'], union_size['y_min']:union_size['y_max']] = \
                            depth_edge_output
                        edge_dict['fpath_map'], edge_dict['npath_map'], break_flag, npaths, fpaths, invalid_edge_id = \
                            clean_far_edge_new(full_depth_edge_output, end_depth_maps, edge_dict['mask'], edge_dict['context'], mesh, info_on_pix, edge_dict['self_edge'], inpaint_iter, config)
                for nid in npaths.keys():
                    npath, fpath = npaths[nid], fpaths[nid]
                    start_mx, start_my, end_mx, end_my = -1, -1, -1, -1
                    if end_depth_maps[npath[0][0], npath[0][1]] != 0:
                        start_mx, start_my = npath[0][0], npath[0][1]
                    if end_depth_maps[npath[-1][0], npath[-1][1]] != 0:
                        end_mx, end_my = npath[-1][0], npath[-1][1]
                    if start_mx == -1:
                        import pdb; pdb.set_trace()
                    valid_end_pt = () if end_mx == -1 else (end_mx, end_my, info_on_pix[(end_mx, end_my)][0]['depth'])
                    new_edge_info = dict(fpath=fpath,
                                         npath=npath,
                                         cont_end_pts=valid_end_pt,
                                         mask_id=edge_id,
                                         comp_edge_id=nid,
                                         depth=end_depth_maps[start_mx, start_my])
                    if edges_infos.get((start_mx, start_my)) is None:
                        edges_infos[(start_mx, start_my)] = []
                    edges_infos[(start_mx, start_my)].append(new_edge_info)
                    edges_in_mask[edge_id].add((start_mx, start_my))
                    if len(valid_end_pt) > 0:
                        new_edge_info = dict(fpath=fpath[::-1],
                                             npath=npath[::-1],
                                             cont_end_pts=(start_mx, start_my, info_on_pix[(start_mx, start_my)][0]['depth']),
                                             mask_id=edge_id,
                                             comp_edge_id=nid,
                                             depth=end_depth_maps[end_mx, end_my])
                        if edges_infos.get((end_mx, end_my)) is None:
                            edges_infos[(end_mx, end_my)] = []
                        edges_infos[(end_mx, end_my)].append(new_edge_info)
                        edges_in_mask[edge_id].add((end_mx, end_my))
    for edge_id, (context_cc, mask_cc, erode_context_cc, extend_context_cc, edge_cc) in enumerate(zip(context_ccs, mask_ccs, erode_context_ccs, extend_context_ccs, edge_ccs)):
        if len(specific_edge_id) > 0:
            if edge_id not in specific_edge_id:
                continue
        if len(context_cc) < 1 or len(mask_cc) < 1:
            continue
        edge_dict = get_edge_from_nodes(context_cc | extend_context_cc, erode_context_cc | extend_erode_context_ccs[edge_id], mask_cc, edge_cc, extend_edge_ccs[edge_id],
                                        mesh.graph['H'], mesh.graph['W'], mesh)
        if specific_edge_loc is not None and \
            (specific_edge_loc is not None and edge_dict['mask'][specific_edge_loc[0], specific_edge_loc[1]] == 0):
            continue
        else:
            tmp_specific_edge_id.append(edge_id)
        edge_dict['edge'], end_depth_maps, _ = \
            filter_irrelevant_edge_new(edge_dict['self_edge'], edge_dict['comp_edge'],
                                    edge_map,
                                    edge_maps_with_id,
                                    edge_id,
                                    edge_dict['context'],
                                    edge_dict['depth'], mesh, context_cc | erode_context_cc | extend_context_cc | extend_erode_context_ccs[edge_id], spdb=False)
        discard_map = np.zeros_like(edge_dict['edge'])
        mask_size = get_valid_size(edge_dict['mask'])
        mask_size = dilate_valid_size(mask_size, edge_dict['mask'], dilate=[20, 20])
        context_size = get_valid_size(edge_dict['context'])
        context_size = dilate_valid_size(context_size, edge_dict['context'], dilate=[20, 20])
        union_size = size_operation(mask_size, context_size, operation='+')
        patch_edge_dict = dict()
        patch_edge_dict['mask'], patch_edge_dict['context'], patch_edge_dict['rgb'], \
            patch_edge_dict['disp'], patch_edge_dict['edge'] = \
            crop_maps_by_size(union_size, edge_dict['mask'], edge_dict['context'],
                                edge_dict['rgb'], edge_dict['disp'], edge_dict['edge'])
        x_anchor, y_anchor = [union_size['x_min'], union_size['x_max']], [union_size['y_min'], union_size['y_max']]
        tensor_edge_dict = convert2tensor(patch_edge_dict)
        input_edge_feat = torch.cat((tensor_edge_dict['rgb'],
                                        tensor_edge_dict['disp'],
                                        tensor_edge_dict['edge'],
                                        1 - tensor_edge_dict['context'],
                                        tensor_edge_dict['mask']), dim=1)
        edge_dict['output'] = edge_dict['edge'].copy()

        if require_depth_edge(patch_edge_dict['edge'], patch_edge_dict['mask']) and inpaint_iter == 0:
            edge_dict['fpath_map'], edge_dict['npath_map'] = edge_dict['fpath_map'] * 0 - 1, edge_dict['npath_map'] * 0 - 1
            end_pts = edges_in_mask[edge_id]
            for end_pt in end_pts:
                cur_edge_infos = edges_infos[(end_pt[0], end_pt[1])]
                cur_info = [xx for xx in cur_edge_infos if xx['mask_id'] == edge_id][0]
                other_infos = [xx for xx in cur_edge_infos if xx['mask_id'] != edge_id and len(xx['cont_end_pts']) > 0]
                if len(cur_info['cont_end_pts']) > 0 or (len(cur_info['cont_end_pts']) == 0 and len(other_infos) == 0):
                    for fnode in cur_info['fpath']:
                        edge_dict['fpath_map'][fnode[0], fnode[1]] = cur_info['comp_edge_id']
                    for fnode in cur_info['npath']:
                        edge_dict['npath_map'][fnode[0], fnode[1]] = cur_info['comp_edge_id']
            fnmap = edge_dict['fpath_map'] * 1
            fnmap[edge_dict['npath_map'] != -1] = edge_dict['npath_map'][edge_dict['npath_map'] != -1]
            for end_pt in end_pts:
                cur_edge_infos = edges_infos[(end_pt[0], end_pt[1])]
                cur_info = [xx for xx in cur_edge_infos if xx['mask_id'] == edge_id][0]
                cur_depth = cur_info['depth']
                other_infos = [xx for xx in cur_edge_infos if xx['mask_id'] != edge_id and len(xx['cont_end_pts']) > 0]
                comp_edge_id = cur_info['comp_edge_id']
                if len(cur_info['cont_end_pts']) == 0 and len(other_infos) > 0:
                    other_infos = sorted(other_infos, key=lambda aa: abs(abs(aa['cont_end_pts'][2]) - abs(cur_depth)))
                    for other_info in other_infos:
                        tmp_fmap, tmp_nmap = np.zeros((mesh.graph['H'], mesh.graph['W'])) - 1, np.zeros((mesh.graph['H'], mesh.graph['W'])) - 1
                        for fnode in other_info['fpath']:
                            if fnmap[fnode[0], fnode[1]] != -1:
                                tmp_fmap = tmp_fmap * 0 - 1
                                break
                            else:
                                tmp_fmap[fnode[0], fnode[1]] = comp_edge_id
                        if fnmap[fnode[0], fnode[1]] != -1:
                            continue
                        for fnode in other_info['npath']:
                            if fnmap[fnode[0], fnode[1]] != -1:
                                tmp_nmap = tmp_nmap * 0 - 1
                                break
                            else:
                                tmp_nmap[fnode[0], fnode[1]] = comp_edge_id
                        if fnmap[fnode[0], fnode[1]] != -1:
                            continue
                        break
                    if min(tmp_fmap.max(), tmp_nmap.max()) != -1:
                        edge_dict['fpath_map'] = tmp_fmap
                        edge_dict['fpath_map'][edge_dict['valid_area'] == 0] = -1
                        edge_dict['npath_map'] = tmp_nmap
                        edge_dict['npath_map'][edge_dict['valid_area'] == 0] = -1
                        discard_map = ((tmp_nmap != -1).astype(np.uint8) + (tmp_fmap != -1).astype(np.uint8)) * edge_dict['mask']
                    else:
                        for fnode in cur_info['fpath']:
                            edge_dict['fpath_map'][fnode[0], fnode[1]] = cur_info['comp_edge_id']
                        for fnode in cur_info['npath']:
                            edge_dict['npath_map'][fnode[0], fnode[1]] = cur_info['comp_edge_id']
            if edge_dict['npath_map'].min() == 0 or edge_dict['fpath_map'].min() == 0:
                import pdb; pdb.set_trace()
            edge_dict['output'] = (edge_dict['npath_map'] > -1) * edge_dict['mask'] + edge_dict['context'] * edge_dict['edge']
        mesh, _, _, _ = create_placeholder(edge_dict['context'], edge_dict['mask'],
                                  edge_dict['depth'], edge_dict['fpath_map'],
                                  edge_dict['npath_map'], mesh, inpaint_iter,
                                  edge_ccs,
                                  extend_edge_ccs[edge_id],
                                  edge_maps_with_id,
                                  edge_id)

        dxs, dys = np.where(discard_map != 0)
        for dx, dy in zip(dxs, dys):
            mesh.nodes[(dx, dy)]['inpaint_twice'] = False
        depth_dict = depth_inpainting(context_cc, extend_context_cc, erode_context_cc | extend_erode_context_ccs[edge_id], mask_cc, mesh, config, union_size, depth_feat_model, edge_dict['output'])
        refine_depth_output = depth_dict['output']*depth_dict['mask']
        for near_id in np.unique(edge_dict['npath_map'])[1:]:
            refine_depth_output = refine_depth_around_edge(refine_depth_output.copy(),
                                                            (edge_dict['fpath_map'] == near_id).astype(np.uint8) * edge_dict['mask'],
                                                            (edge_dict['fpath_map'] == near_id).astype(np.uint8),
                                                            (edge_dict['npath_map'] == near_id).astype(np.uint8) * edge_dict['mask'],
                                                            depth_dict['mask'].copy(),
                                                            depth_dict['output'] * depth_dict['context'],
                                                            config)
        depth_dict['output'][depth_dict['mask'] > 0] = refine_depth_output[depth_dict['mask'] > 0]
        rgb_dict = get_rgb_from_nodes(context_cc | extend_context_cc,
                                      erode_context_cc | extend_erode_context_ccs[edge_id], mask_cc, mesh.graph['H'], mesh.graph['W'], mesh)
        if np.all(rgb_dict['mask'] == edge_dict['mask']) is False:
            import pdb; pdb.set_trace()
        rgb_dict['edge'] = edge_dict['output']
        patch_rgb_dict = dict()
        patch_rgb_dict['mask'], patch_rgb_dict['context'], patch_rgb_dict['rgb'], \
            patch_rgb_dict['edge'] = crop_maps_by_size(union_size, rgb_dict['mask'],
                                                        rgb_dict['context'], rgb_dict['rgb'],
                                                        rgb_dict['edge'])
        tensor_rgb_dict = convert2tensor(patch_rgb_dict)
        resize_rgb_dict = {k: v.clone() for k, v in tensor_rgb_dict.items()}
        max_hw = np.array([*patch_rgb_dict['mask'].shape[-2:]]).max()
        init_frac = config['largest_size'] / (np.array([*patch_rgb_dict['mask'].shape[-2:]]).prod() ** 0.5)
        resize_hw = [patch_rgb_dict['mask'].shape[-2] * init_frac, patch_rgb_dict['mask'].shape[-1] * init_frac]
        resize_max_hw = max(resize_hw)
        frac = (np.floor(resize_max_hw / 128.) * 128.) / max_hw
        if frac < 1:
            resize_mark = torch.nn.functional.interpolate(torch.cat((resize_rgb_dict['mask'],
                                                            resize_rgb_dict['context']),
                                                            dim=1),
                                                            scale_factor=frac,
                                                            mode='area')
            resize_rgb_dict['mask'] = (resize_mark[:, 0:1] > 0).float()
            resize_rgb_dict['context'] = (resize_mark[:, 1:2] == 1).float()
            resize_rgb_dict['context'][resize_rgb_dict['mask'] > 0] = 0
            resize_rgb_dict['rgb'] = torch.nn.functional.interpolate(resize_rgb_dict['rgb'],
                                                                        scale_factor=frac,
                                                                        mode='area')
            resize_rgb_dict['rgb'] = resize_rgb_dict['rgb'] * resize_rgb_dict['context']
            resize_rgb_dict['edge'] = torch.nn.functional.interpolate(resize_rgb_dict['edge'],
                                                                        scale_factor=frac,
                                                                        mode='area')
            resize_rgb_dict['edge'] = (resize_rgb_dict['edge'] > 0).float() * 0
            resize_rgb_dict['edge'] = resize_rgb_dict['edge'] * (resize_rgb_dict['context'] + resize_rgb_dict['mask'])
        rgb_input_feat = torch.cat((resize_rgb_dict['rgb'], resize_rgb_dict['edge']), dim=1)
        rgb_input_feat[:, 3] = 1 - rgb_input_feat[:, 3]
        resize_mask = open_small_mask(resize_rgb_dict['mask'], resize_rgb_dict['context'], 3, 41)
        specified_hole = resize_mask
        with torch.no_grad():
            rgb_output = rgb_model.forward_3P(specified_hole,
                                            resize_rgb_dict['context'],
                                            resize_rgb_dict['rgb'],
                                            resize_rgb_dict['edge'],
                                            unit_length=128,
                                            cuda=device)
            rgb_output = rgb_output.cpu()
            if config.get('gray_image') is True:
                rgb_output = rgb_output.mean(1, keepdim=True).repeat((1,3,1,1))
            rgb_output = rgb_output.cpu()
        resize_rgb_dict['output'] = rgb_output * resize_rgb_dict['mask'] + resize_rgb_dict['rgb']
        tensor_rgb_dict['output'] = resize_rgb_dict['output']
        if frac < 1:
            tensor_rgb_dict['output'] = torch.nn.functional.interpolate(tensor_rgb_dict['output'],
                                                                        size=tensor_rgb_dict['mask'].shape[-2:],
                                                                        mode='bicubic')
            tensor_rgb_dict['output'] = tensor_rgb_dict['output'] * \
                                         tensor_rgb_dict['mask'] + (tensor_rgb_dict['rgb'] * tensor_rgb_dict['context'])
        patch_rgb_dict['output'] = tensor_rgb_dict['output'].data.cpu().numpy().squeeze().transpose(1,2,0)
        rgb_dict['output'] = np.zeros((mesh.graph['H'], mesh.graph['W'], 3))
        rgb_dict['output'][union_size['x_min']:union_size['x_max'], union_size['y_min']:union_size['y_max']] = \
            patch_rgb_dict['output']

        if require_depth_edge(patch_edge_dict['edge'], patch_edge_dict['mask']) or inpaint_iter > 0:
            edge_occlusion = True
        else:
            edge_occlusion = False
        for node in erode_context_cc:
            if rgb_dict['mask'][node[0], node[1]] > 0:
                for info in info_on_pix[(node[0], node[1])]:
                    if abs(info['depth']) == abs(node[2]):
                        info['update_color'] = (rgb_dict['output'][node[0], node[1]] * 255).astype(np.uint8)
        if frac < 1.:
            depth_edge_dilate_2_color_flag = False
        else:
            depth_edge_dilate_2_color_flag = True
        hxs, hys = np.where((rgb_dict['mask'] > 0) & (rgb_dict['erode'] == 0))
        for hx, hy in zip(hxs, hys):
            real_depth = None
            if abs(depth_dict['output'][hx, hy]) <= abs(np_depth[hx, hy]):
                depth_dict['output'][hx, hy] = np_depth[hx, hy] + 0.01
            node = (hx, hy, -depth_dict['output'][hx, hy])
            if info_on_pix.get((node[0], node[1])) is not None:
                for info in info_on_pix.get((node[0], node[1])):
                    if info.get('inpaint_id') is None or abs(info['inpaint_id'] < mesh.nodes[(hx, hy)]['inpaint_id']):
                        pre_depth = info['depth'] if info.get('real_depth') is None else info['real_depth']
                        if abs(node[2]) < abs(pre_depth):
                            node = (node[0], node[1], -(abs(pre_depth) + 0.001))
            if mesh.has_node(node):
                real_depth = node[2]
            while True:
                if mesh.has_node(node):
                    node = (node[0], node[1], -(abs(node[2]) + 0.001))
                else:
                    break
            if real_depth == node[2]:
                real_depth = None
            cur_disp = 1./node[2]
            if not(mesh.has_node(node)):
                if not mesh.has_node((node[0], node[1])):
                    print("2D node not found.")
                    import pdb; pdb.set_trace()
                if inpaint_iter == 1:
                    paint = (rgb_dict['output'][hx, hy] * 255).astype(np.uint8)
                else:
                    paint = (rgb_dict['output'][hx, hy] * 255).astype(np.uint8)
                ndict = dict(color=paint,
                                synthesis=True,
                                disp=cur_disp,
                                cc_id=set([edge_id]),
                                overlap_number=1.0,
                                refine_depth=False,
                                edge_occlusion=edge_occlusion,
                                depth_edge_dilate_2_color_flag=depth_edge_dilate_2_color_flag,
                                real_depth=real_depth)
                mesh, _, _ = refresh_node((node[0], node[1]), mesh.nodes[(node[0], node[1])], node, ndict, mesh, stime=True)
                if inpaint_iter == 0 and mesh.degree(node) < 4:
                    connnect_points_ccs[edge_id].add(node)
            if info_on_pix.get((hx, hy)) is None:
                info_on_pix[(hx, hy)] = []
            new_info = {'depth':node[2],
                        'color': paint,
                        'synthesis':True,
                        'disp':cur_disp,
                        'cc_id':set([edge_id]),
                        'inpaint_id':inpaint_iter + 1,
                        'edge_occlusion':edge_occlusion,
                        'overlap_number':1.0,
                        'real_depth': real_depth}
            info_on_pix[(hx, hy)].append(new_info)
    specific_edge_id = tmp_specific_edge_id
    for erode_id, erode_context_cc in enumerate(erode_context_ccs):
        if len(specific_edge_id) > 0 and erode_id not in specific_edge_id:
            continue
        for erode_node in erode_context_cc:
            for info in info_on_pix[(erode_node[0], erode_node[1])]:
                if info['depth'] == erode_node[2]:
                    info['color'] = info['update_color']
                    mesh.nodes[erode_node]['color'] = info['update_color']
                    np_image[(erode_node[0], erode_node[1])] = info['update_color']
    new_edge_ccs = [set() for _ in range(mesh.graph['max_edge_id'] + 1)]
    for node in mesh.nodes:
        if len(node) == 2:
            mesh.remove_node(node)
            continue
        if mesh.nodes[node].get('edge_id') is not None and mesh.nodes[node].get('inpaint_id') == inpaint_iter + 1:
            if mesh.nodes[node].get('inpaint_twice') is False:
                continue
            try:
                new_edge_ccs[mesh.nodes[node].get('edge_id')].add(node)
            except:
                import pdb; pdb.set_trace()
    specific_mask_nodes = None
    if inpaint_iter == 0:
        mesh, info_on_pix = refine_color_around_edge(mesh, info_on_pix, new_edge_ccs, config, False)

    return mesh, info_on_pix, specific_mask_nodes, new_edge_ccs, connnect_points_ccs, np_image


def write_ply(image,
              depth,
              int_mtx,
              ply_name,
              config,
              rgb_model,
              depth_edge_model,
              depth_edge_model_init,
              depth_feat_model):
    depth = depth.astype(np.float64)
    input_mesh, xy2depth, image, depth = create_mesh(depth, image, int_mtx, config)

    H, W = input_mesh.graph['H'], input_mesh.graph['W']
    input_mesh = tear_edges(input_mesh, config['depth_threshold'], xy2depth)
    input_mesh, info_on_pix = generate_init_node(input_mesh, config, min_node_in_cc=200)
    edge_ccs, input_mesh, edge_mesh = group_edges(input_mesh, config, image, remove_conflict_ordinal=False)
    edge_canvas = np.zeros((H, W)) - 1

    input_mesh, info_on_pix, depth = reassign_floating_island(input_mesh, info_on_pix, image, depth)
    input_mesh = update_status(input_mesh, info_on_pix)
    specific_edge_id = []
    edge_ccs, input_mesh, edge_mesh = group_edges(input_mesh, config, image, remove_conflict_ordinal=True)
    pre_depth = depth.copy()
    input_mesh, info_on_pix, edge_mesh, depth, aft_mark = remove_dangling(input_mesh, edge_ccs, edge_mesh, info_on_pix, image, depth, config)

    input_mesh, depth, info_on_pix = update_status(input_mesh, info_on_pix, depth)
    edge_ccs, input_mesh, edge_mesh = group_edges(input_mesh, config, image, remove_conflict_ordinal=True)
    edge_canvas = np.zeros((H, W)) - 1

    mesh, info_on_pix, depth = fill_missing_node(input_mesh, info_on_pix, image, depth)
    if config['extrapolate_border'] is True:
        pre_depth = depth.copy()
        input_mesh, info_on_pix, depth = refresh_bord_depth(input_mesh, info_on_pix, image, depth)
        input_mesh = remove_node_feat(input_mesh, 'edge_id')
        aft_depth = depth.copy()
        input_mesh, info_on_pix, depth, image = enlarge_border(input_mesh, info_on_pix, depth, image, config)
        noext_H, noext_W = H, W
        H, W = image.shape[:2]
        input_mesh, info_on_pix = fill_dummy_bord(input_mesh, info_on_pix, image, depth, config)
        edge_ccs, input_mesh, edge_mesh = \
            group_edges(input_mesh, config, image, remove_conflict_ordinal=True)
        input_mesh = combine_end_node(input_mesh, edge_mesh, edge_ccs, depth)
        input_mesh, depth, info_on_pix = update_status(input_mesh, info_on_pix, depth)
        edge_ccs, input_mesh, edge_mesh = \
            group_edges(input_mesh, config, image, remove_conflict_ordinal=True, spdb=False)
        input_mesh = remove_redundant_edge(input_mesh, edge_mesh, edge_ccs, info_on_pix, config, redundant_number=config['redundant_number'], spdb=False)
        input_mesh, depth, info_on_pix = update_status(input_mesh, info_on_pix, depth)
        edge_ccs, input_mesh, edge_mesh = group_edges(input_mesh, config, image, remove_conflict_ordinal=True)
        input_mesh = combine_end_node(input_mesh, edge_mesh, edge_ccs, depth)
        input_mesh = remove_redundant_edge(input_mesh, edge_mesh, edge_ccs, info_on_pix, config, redundant_number=config['redundant_number'], invalid=True, spdb=False)
        input_mesh, depth, info_on_pix = update_status(input_mesh, info_on_pix, depth)
        edge_ccs, input_mesh, edge_mesh = group_edges(input_mesh, config, image, remove_conflict_ordinal=True)
        input_mesh = combine_end_node(input_mesh, edge_mesh, edge_ccs, depth)
        input_mesh, depth, info_on_pix = update_status(input_mesh, info_on_pix, depth)
        edge_ccs, input_mesh, edge_mesh = group_edges(input_mesh, config, image, remove_conflict_ordinal=True)
        edge_condition = lambda x, m: m.nodes[x].get('far') is not None and len(m.nodes[x].get('far')) > 0
        edge_map = get_map_from_ccs(edge_ccs, input_mesh.graph['H'], input_mesh.graph['W'], input_mesh, edge_condition)
        other_edge_with_id = get_map_from_ccs(edge_ccs, input_mesh.graph['H'], input_mesh.graph['W'], real_id=True)
        info_on_pix, input_mesh, image, depth, edge_ccs = extrapolate(input_mesh, info_on_pix, image, depth, other_edge_with_id, edge_map, edge_ccs,
                                                depth_edge_model, depth_feat_model, rgb_model, config, direc="up")
        info_on_pix, input_mesh, image, depth, edge_ccs = extrapolate(input_mesh, info_on_pix, image, depth, other_edge_with_id, edge_map, edge_ccs,
                                                depth_edge_model, depth_feat_model, rgb_model, config, direc="left")
        info_on_pix, input_mesh, image, depth, edge_ccs = extrapolate(input_mesh, info_on_pix, image, depth, other_edge_with_id, edge_map, edge_ccs,
                                                depth_edge_model, depth_feat_model, rgb_model, config, direc="down")
        info_on_pix, input_mesh, image, depth, edge_ccs = extrapolate(input_mesh, info_on_pix, image, depth, other_edge_with_id, edge_map, edge_ccs,
                                                depth_edge_model, depth_feat_model, rgb_model, config, direc="right")
        info_on_pix, input_mesh, image, depth, edge_ccs = extrapolate(input_mesh, info_on_pix, image, depth, other_edge_with_id, edge_map, edge_ccs,
                                                depth_edge_model, depth_feat_model, rgb_model, config, direc="right-up")
        info_on_pix, input_mesh, image, depth, edge_ccs = extrapolate(input_mesh, info_on_pix, image, depth, other_edge_with_id, edge_map, edge_ccs,
                                                depth_edge_model, depth_feat_model, rgb_model, config, direc="right-down")
        info_on_pix, input_mesh, image, depth, edge_ccs = extrapolate(input_mesh, info_on_pix, image, depth, other_edge_with_id, edge_map, edge_ccs,
                                                depth_edge_model, depth_feat_model, rgb_model, config, direc="left-up")
        info_on_pix, input_mesh, image, depth, edge_ccs = extrapolate(input_mesh, info_on_pix, image, depth, other_edge_with_id, edge_map, edge_ccs,
                                                depth_edge_model, depth_feat_model, rgb_model, config, direc="left-down")
    specific_edge_loc = None
    specific_edge_id = []
    vis_edge_id = None
    context_ccs, mask_ccs, broken_mask_ccs, edge_ccs, erode_context_ccs, \
        init_mask_connect, edge_maps, extend_context_ccs, extend_edge_ccs, extend_erode_context_ccs = \
                                                                                context_and_holes(input_mesh,
                                                                                            edge_ccs,
                                                                                            config,
                                                                                            specific_edge_id,
                                                                                            specific_edge_loc,
                                                                                            depth_feat_model,
                                                                                            inpaint_iter=0,
                                                                                            vis_edge_id=vis_edge_id)
    edge_canvas = np.zeros((H, W))
    mask = np.zeros((H, W))
    context = np.zeros((H, W))
    vis_edge_ccs = filter_edge(input_mesh, edge_ccs, config)
    edge_canvas = np.zeros((input_mesh.graph['H'], input_mesh.graph['W'])) - 1
    specific_edge_loc = None
    FG_edge_maps = edge_maps.copy()
    edge_canvas = np.zeros((input_mesh.graph['H'], input_mesh.graph['W'])) - 1
    # for cc_id, cc in enumerate(edge_ccs):
    #     for node in cc:
    #         edge_canvas[node[0], node[1]] = cc_id
    # f, ((ax0, ax1, ax2)) = plt.subplots(1, 3, sharex=True, sharey=True); ax0.imshow(1./depth); ax1.imshow(image); ax2.imshow(edge_canvas); plt.show()
    input_mesh, info_on_pix, specific_edge_nodes, new_edge_ccs, connect_points_ccs, image = DL_inpaint_edge(input_mesh,
                                                                                                            info_on_pix,
                                                                                                            config,
                                                                                                            image,
                                                                                                            depth,
                                                                                                            context_ccs,
                                                                                                            erode_context_ccs,
                                                                                                            extend_context_ccs,
                                                                                                            extend_erode_context_ccs,
                                                                                                            mask_ccs,
                                                                                                            broken_mask_ccs,
                                                                                                            edge_ccs,
                                                                                                            extend_edge_ccs,
                                                                                                            init_mask_connect,
                                                                                                            edge_maps,
                                                                                                            rgb_model,
                                                                                                            depth_edge_model,
                                                                                                            depth_edge_model_init,
                                                                                                            depth_feat_model,
                                                                                                            specific_edge_id,
                                                                                                            specific_edge_loc,
                                                                                                            inpaint_iter=0)
    specific_edge_id = []
    edge_canvas = np.zeros((input_mesh.graph['H'], input_mesh.graph['W']))
    connect_points_ccs = [set() for _ in connect_points_ccs]
    context_ccs, mask_ccs, broken_mask_ccs, edge_ccs, erode_context_ccs, init_mask_connect, \
        edge_maps, extend_context_ccs, extend_edge_ccs, extend_erode_context_ccs = \
            context_and_holes(input_mesh, new_edge_ccs, config, specific_edge_id, specific_edge_loc, depth_feat_model, connect_points_ccs, inpaint_iter=1)
    mask_canvas = np.zeros((input_mesh.graph['H'], input_mesh.graph['W']))
    context_canvas = np.zeros((input_mesh.graph['H'], input_mesh.graph['W']))
    erode_context_ccs_canvas = np.zeros((input_mesh.graph['H'], input_mesh.graph['W']))
    edge_canvas = np.zeros((input_mesh.graph['H'], input_mesh.graph['W']))
    # edge_canvas = np.zeros((input_mesh.graph['H'], input_mesh.graph['W'])) - 1
    # for cc_id, cc in enumerate(edge_ccs):
    #     for node in cc:
    #         edge_canvas[node[0], node[1]] = cc_id
    specific_edge_id = []
    input_mesh, info_on_pix, specific_edge_nodes, new_edge_ccs, _, image = DL_inpaint_edge(input_mesh,
                                                                                    info_on_pix,
                                                                                    config,
                                                                                    image,
                                                                                    depth,
                                                                                    context_ccs,
                                                                                    erode_context_ccs,
                                                                                    extend_context_ccs,
                                                                                    extend_erode_context_ccs,
                                                                                    mask_ccs,
                                                                                    broken_mask_ccs,
                                                                                    edge_ccs,
                                                                                    extend_edge_ccs,
                                                                                    init_mask_connect,
                                                                                    edge_maps,
                                                                                    rgb_model,
                                                                                    depth_edge_model,
                                                                                    depth_edge_model_init,
                                                                                    depth_feat_model,
                                                                                    specific_edge_id,
                                                                                    specific_edge_loc,
                                                                                    inpaint_iter=1)
    vertex_id = 0
    input_mesh.graph['H'], input_mesh.graph['W'] = input_mesh.graph['noext_H'], input_mesh.graph['noext_W']
    background_canvas = np.zeros((input_mesh.graph['H'],
                                  input_mesh.graph['W'],
                                  3))
    ply_flag = config.get('save_ply')
    if ply_flag is True:
        node_str_list = []
    else:
        node_str_color = []
        node_str_point = []
    out_fmt = lambda x, x_flag: str(x) if x_flag is True else x
    point_time = 0
    hlight_time = 0
    cur_id_time = 0
    node_str_time = 0
    generate_face_time = 0
    point_list = []
    k_00, k_02, k_11, k_12 = \
        input_mesh.graph['cam_param_pix_inv'][0, 0], input_mesh.graph['cam_param_pix_inv'][0, 2], \
        input_mesh.graph['cam_param_pix_inv'][1, 1], input_mesh.graph['cam_param_pix_inv'][1, 2]
    w_offset = input_mesh.graph['woffset']
    h_offset = input_mesh.graph['hoffset']
    for pix_xy, pix_list in info_on_pix.items():
        for pix_idx, pix_info in enumerate(pix_list):
            pix_depth = pix_info['depth'] if pix_info.get('real_depth') is None else pix_info['real_depth']
            str_pt = [out_fmt(x, ply_flag) for x in reproject_3d_int_detail(pix_xy[0], pix_xy[1], pix_depth,
                      k_00, k_02, k_11, k_12, w_offset, h_offset)]
            if input_mesh.has_node((pix_xy[0], pix_xy[1], pix_info['depth'])) is False:
                return False
                continue
            if pix_info.get('overlap_number') is not None:
                str_color = [out_fmt(x, ply_flag) for x in (pix_info['color']/pix_info['overlap_number']).astype(np.uint8).tolist()]
            else:
                str_color = [out_fmt(x, ply_flag) for x in pix_info['color'].tolist()]
            if pix_info.get('edge_occlusion') is True:
                str_color.append(out_fmt(4, ply_flag))
            else:
                if pix_info.get('inpaint_id') is None:
                    str_color.append(out_fmt(1, ply_flag))
                else:
                    str_color.append(out_fmt(pix_info.get('inpaint_id') + 1, ply_flag))
            if pix_info.get('modified_border') is True or pix_info.get('ext_pixel') is True:
                if len(str_color) == 4:
                    str_color[-1] = out_fmt(5, ply_flag)
                else:
                    str_color.append(out_fmt(5, ply_flag))
            pix_info['cur_id'] = vertex_id
            input_mesh.nodes[(pix_xy[0], pix_xy[1], pix_info['depth'])]['cur_id'] = out_fmt(vertex_id, ply_flag)
            vertex_id += 1
            if ply_flag is True:
                node_str_list.append(' '.join(str_pt) + ' ' + ' '.join(str_color) + '\n')
            else:
                node_str_color.append(str_color)
                node_str_point.append(str_pt)
    str_faces = generate_face(input_mesh, info_on_pix, config)
    if config['save_ply'] is True:
        print("Writing mesh file %s ..." % ply_name)
        with open(ply_name, 'w') as ply_fi:
            ply_fi.write('ply\n' + 'format ascii 1.0\n')
            ply_fi.write('comment H ' + str(int(input_mesh.graph['H'])) + '\n')
            ply_fi.write('comment W ' + str(int(input_mesh.graph['W'])) + '\n')
            ply_fi.write('comment hFov ' + str(float(input_mesh.graph['hFov'])) + '\n')
            ply_fi.write('comment vFov ' + str(float(input_mesh.graph['vFov'])) + '\n')
            ply_fi.write('element vertex ' + str(len(node_str_list)) + '\n')
            ply_fi.write('property float x\n' + \
                         'property float y\n' + \
                         'property float z\n' + \
                         'property uchar red\n' + \
                         'property uchar green\n' + \
                         'property uchar blue\n' + \
                         'property uchar alpha\n')
            ply_fi.write('element face ' + str(len(str_faces)) + '\n')
            ply_fi.write('property list uchar int vertex_index\n')
            ply_fi.write('end_header\n')
            ply_fi.writelines(node_str_list)
            ply_fi.writelines(str_faces)
        ply_fi.close()
        return input_mesh
    else:
        H = int(input_mesh.graph['H'])
        W = int(input_mesh.graph['W'])
        hFov = input_mesh.graph['hFov']
        vFov = input_mesh.graph['vFov']
        node_str_color = np.array(node_str_color).astype(np.float32)
        node_str_color[..., :3] = node_str_color[..., :3] / 255.
        node_str_point = np.array(node_str_point)
        str_faces = np.array(str_faces)

        return node_str_point, node_str_color, str_faces, H, W, hFov, vFov

def read_ply(mesh_fi):
    ply_fi = open(mesh_fi, 'r')
    Height = None
    Width = None
    hFov = None
    vFov = None
    while True:
        line = ply_fi.readline().split('\n')[0]
        if line.startswith('element vertex'):
            num_vertex = int(line.split(' ')[-1])
        elif line.startswith('element face'):
            num_face = int(line.split(' ')[-1])
        elif line.startswith('comment'):
            if line.split(' ')[1] == 'H':
                Height = int(line.split(' ')[-1].split('\n')[0])
            if line.split(' ')[1] == 'W':
                Width = int(line.split(' ')[-1].split('\n')[0])
            if line.split(' ')[1] == 'hFov':
                hFov = float(line.split(' ')[-1].split('\n')[0])
            if line.split(' ')[1] == 'vFov':
                vFov = float(line.split(' ')[-1].split('\n')[0])
        elif line.startswith('end_header'):
            break
    contents = ply_fi.readlines()
    vertex_infos = contents[:num_vertex]
    face_infos = contents[num_vertex:]
    verts = []
    colors = []
    faces = []
    for v_info in vertex_infos:
        str_info = [float(v) for v in v_info.split('\n')[0].split(' ')]
        if len(str_info) == 6:
            vx, vy, vz, r, g, b = str_info
        else:
            vx, vy, vz, r, g, b, hi = str_info
        verts.append([vx, vy, vz])
        colors.append([r, g, b, hi])
    verts = np.array(verts)
    try:
        colors = np.array(colors)
        colors[..., :3] = colors[..., :3]/255.
    except:
        import pdb
        pdb.set_trace()

    for f_info in face_infos:
        _, v1, v2, v3 = [int(f) for f in f_info.split('\n')[0].split(' ')]
        faces.append([v1, v2, v3])
    faces = np.array(faces)


    return verts, colors, faces, Height, Width, hFov, vFov


class Canvas_view():
    def __init__(self,
                 fov,
                 verts,
                 faces,
                 colors,
                 canvas_size,
                 factor=1,
                 bgcolor='gray',
                 proj='perspective',
                 ):
        self.canvas = scene.SceneCanvas(bgcolor=bgcolor, size=(canvas_size*factor, canvas_size*factor))
        self.view = self.canvas.central_widget.add_view()
        self.view.camera = 'perspective'
        self.view.camera.fov = fov
        self.mesh = visuals.Mesh(shading=None)
        self.mesh.attach(Alpha(1.0))
        self.view.add(self.mesh)
        self.tr = self.view.camera.transform
        self.mesh.set_data(vertices=verts, faces=faces, vertex_colors=colors[:, :3])
        self.translate([0,0,0])
        self.rotate(axis=[1,0,0], angle=180)
        self.view_changed()

    def translate(self, trans=[0,0,0]):
        self.tr.translate(trans)

    def rotate(self, axis=[1,0,0], angle=0):
        self.tr.rotate(axis=axis, angle=angle)

    def view_changed(self):
        self.view.camera.view_changed()

    def render(self):
        return self.canvas.render()

    def reinit_mesh(self, verts, faces, colors):
        self.mesh.set_data(vertices=verts, faces=faces, vertex_colors=colors[:, :3])

    def reinit_camera(self, fov):
        self.view.camera.fov = fov
        self.view.camera.view_changed()


def output_3d_photo(verts, colors, faces, Height, Width, hFov, vFov, tgt_poses, video_traj_types, ref_pose,
                    output_dir, ref_image, int_mtx, config, image, videos_poses, video_basename, original_H=None, original_W=None,
                    border=None, depth=None, normal_canvas=None, all_canvas=None, mean_loc_depth=None):

    cam_mesh = netx.Graph()
    cam_mesh.graph['H'] = Height
    cam_mesh.graph['W'] = Width
    cam_mesh.graph['original_H'] = original_H
    cam_mesh.graph['original_W'] = original_W
    int_mtx_real_x = int_mtx[0] * Width
    int_mtx_real_y = int_mtx[1] * Height
    cam_mesh.graph['hFov'] = 2 * np.arctan((1. / 2.) * ((cam_mesh.graph['original_W']) / int_mtx_real_x[0]))
    cam_mesh.graph['vFov'] = 2 * np.arctan((1. / 2.) * ((cam_mesh.graph['original_H']) / int_mtx_real_y[1]))
    colors = colors[..., :3]

    fov_in_rad = max(cam_mesh.graph['vFov'], cam_mesh.graph['hFov'])
    fov = (fov_in_rad * 180 / np.pi)
    print("fov: " + str(fov))
    init_factor = 1
    if config.get('anti_flickering') is True:
        init_factor = 3
    if (cam_mesh.graph['original_H'] is not None) and (cam_mesh.graph['original_W'] is not None):
        canvas_w = cam_mesh.graph['original_W']
        canvas_h = cam_mesh.graph['original_H']
    else:
        canvas_w = cam_mesh.graph['W']
        canvas_h = cam_mesh.graph['H']
    canvas_size = max(canvas_h, canvas_w)
    if normal_canvas is None:
        normal_canvas = Canvas_view(fov,
                                    verts,
                                    faces,
                                    colors,
                                    canvas_size=canvas_size,
                                    factor=init_factor,
                                    bgcolor='gray',
                                    proj='perspective')
    else:
        normal_canvas.reinit_mesh(verts, faces, colors)
        normal_canvas.reinit_camera(fov)
    img = normal_canvas.render()
    backup_img, backup_all_img, all_img_wo_bound = img.copy(), img.copy() * 0, img.copy() * 0
    img = cv2.resize(img, (int(img.shape[1] / init_factor), int(img.shape[0] / init_factor)), interpolation=cv2.INTER_AREA)
    if border is None:
        border = [0, img.shape[0], 0, img.shape[1]]
    H, W = cam_mesh.graph['H'], cam_mesh.graph['W']
    if (cam_mesh.graph['original_H'] is not None) and (cam_mesh.graph['original_W'] is not None):
        aspect_ratio = cam_mesh.graph['original_H'] / cam_mesh.graph['original_W']
    else:
        aspect_ratio = cam_mesh.graph['H'] / cam_mesh.graph['W']
    if aspect_ratio > 1:
        img_h_len = cam_mesh.graph['H'] if cam_mesh.graph.get('original_H') is None else cam_mesh.graph['original_H']
        img_w_len = img_h_len / aspect_ratio
        anchor = [0,
                  img.shape[0],
                  int(max(0, int((img.shape[1])//2 - img_w_len//2))),
                  int(min(int((img.shape[1])//2 + img_w_len//2), (img.shape[1])-1))]
    elif aspect_ratio <= 1:
        img_w_len = cam_mesh.graph['W'] if cam_mesh.graph.get('original_W') is None else cam_mesh.graph['original_W']
        img_h_len = img_w_len * aspect_ratio
        anchor = [int(max(0, int((img.shape[0])//2 - img_h_len//2))),
                  int(min(int((img.shape[0])//2 + img_h_len//2), (img.shape[0])-1)),
                  0,
                  img.shape[1]]
    anchor = np.array(anchor)
    plane_width = np.tan(fov_in_rad/2.) * np.abs(mean_loc_depth)
    for video_pose, video_traj_type in zip(videos_poses, video_traj_types):
        stereos = []
        tops = []; buttoms = []; lefts = []; rights = []
        for tp_id, tp in enumerate(video_pose):
            rel_pose = np.linalg.inv(np.dot(tp, np.linalg.inv(ref_pose)))
            axis, angle = transforms3d.axangles.mat2axangle(rel_pose[0:3, 0:3])
            normal_canvas.rotate(axis=axis, angle=(angle*180)/np.pi)
            normal_canvas.translate(rel_pose[:3,3])
            new_mean_loc_depth = mean_loc_depth - float(rel_pose[2, 3])
            if 'dolly' in video_traj_type:
                new_fov = float((np.arctan2(plane_width, np.array([np.abs(new_mean_loc_depth)])) * 180. / np.pi) * 2)
                normal_canvas.reinit_camera(new_fov)
            else:
                normal_canvas.reinit_camera(fov)
            normal_canvas.view_changed()
            img = normal_canvas.render()
            img = cv2.GaussianBlur(img,(int(init_factor//2 * 2 + 1), int(init_factor//2 * 2 + 1)), 0)
            img = cv2.resize(img, (int(img.shape[1] / init_factor), int(img.shape[0] / init_factor)), interpolation=cv2.INTER_AREA)
            img = img[anchor[0]:anchor[1], anchor[2]:anchor[3]]
            img = img[int(border[0]):int(border[1]), int(border[2]):int(border[3])]

            if any(np.array(config['crop_border']) > 0.0):
                H_c, W_c, _ = img.shape
                o_t = int(H_c * config['crop_border'][0])
                o_l = int(W_c * config['crop_border'][1])
                o_b = int(H_c * config['crop_border'][2])
                o_r = int(W_c * config['crop_border'][3])
                img = img[o_t:H_c-o_b, o_l:W_c-o_r]
                img = cv2.resize(img, (W_c, H_c), interpolation=cv2.INTER_CUBIC)

            """
            img = cv2.resize(img, (int(img.shape[1] / init_factor), int(img.shape[0] / init_factor)), interpolation=cv2.INTER_CUBIC)
            img = img[anchor[0]:anchor[1], anchor[2]:anchor[3]]
            img = img[int(border[0]):int(border[1]), int(border[2]):int(border[3])]

            if config['crop_border'] is True:
                top, buttom, left, right = find_largest_rect(img, bg_color=(128, 128, 128))
                tops.append(top); buttoms.append(buttom); lefts.append(left); rights.append(right)
            """
            stereos.append(img[..., :3])
            normal_canvas.translate(-rel_pose[:3,3])
            normal_canvas.rotate(axis=axis, angle=-(angle*180)/np.pi)
            normal_canvas.view_changed()
        """
        if config['crop_border'] is True:
            atop, abuttom = min(max(tops), img.shape[0]//2 - 10), max(min(buttoms), img.shape[0]//2 + 10)
            aleft, aright = min(max(lefts), img.shape[1]//2 - 10), max(min(rights), img.shape[1]//2 + 10)
            atop -= atop % 2; abuttom -= abuttom % 2; aleft -= aleft % 2; aright -= aright % 2
        else:
            atop = 0; abuttom = img.shape[0] - img.shape[0] % 2; aleft = 0; aright = img.shape[1] - img.shape[1] % 2
        """
        atop = 0; abuttom = img.shape[0] - img.shape[0] % 2; aleft = 0; aright = img.shape[1] - img.shape[1] % 2
        crop_stereos = []
        for stereo in stereos:
            crop_stereos.append((stereo[atop:abuttom, aleft:aright, :3] * 1).astype(np.uint8))
            stereos = crop_stereos
        clip = ImageSequenceClip(stereos, fps=config['fps'])
        if isinstance(video_basename, list):
            video_basename = video_basename[0]
        clip.write_videofile(os.path.join(output_dir, video_basename + '_' + video_traj_type + '.mp4'), fps=config['fps'])



    return normal_canvas, all_canvas