File size: 2,329 Bytes
0b9f920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import cv2
import glob
import numpy as np
import imageio
from MiDaS.MiDaS_utils import write_depth

BOOST_BASE = 'BoostingMonocularDepth'

BOOST_INPUTS = 'inputs'
BOOST_OUTPUTS = 'outputs'

def run_boostmonodepth(img_names, src_folder, depth_folder):

    if not isinstance(img_names, list):
        img_names = [img_names]

    # remove irrelevant files first
    clean_folder(os.path.join(BOOST_BASE, BOOST_INPUTS))
    clean_folder(os.path.join(BOOST_BASE, BOOST_OUTPUTS))

    tgt_names = []
    for img_name in img_names:
        base_name = os.path.basename(img_name)
        tgt_name = os.path.join(BOOST_BASE, BOOST_INPUTS, base_name)
        os.system(f'cp {img_name} {tgt_name}')

        # keep only the file name here.
        # they save all depth as .png file
        tgt_names.append(os.path.basename(tgt_name).replace('.jpg', '.png'))

    os.system(f'cd {BOOST_BASE} && python run.py --Final --data_dir {BOOST_INPUTS}/  --output_dir {BOOST_OUTPUTS} --depthNet 0')

    for i, (img_name, tgt_name) in enumerate(zip(img_names, tgt_names)):
        img = imageio.imread(img_name)
        H, W = img.shape[:2]
        scale = 640. / max(H, W)

        # resize and save depth
        target_height, target_width = int(round(H * scale)), int(round(W * scale))
        depth = imageio.imread(os.path.join(BOOST_BASE, BOOST_OUTPUTS, tgt_name))
        depth = np.array(depth).astype(np.float32)
        depth = resize_depth(depth, target_width, target_height)
        np.save(os.path.join(depth_folder, tgt_name.replace('.png', '.npy')), depth / 32768. - 1.)
        write_depth(os.path.join(depth_folder, tgt_name.replace('.png', '')), depth)

def clean_folder(folder, img_exts=['.png', '.jpg', '.npy']):

    for img_ext in img_exts:
        paths_to_check = os.path.join(folder, f'*{img_ext}')
        if len(glob.glob(paths_to_check)) == 0:
            continue
        print(paths_to_check)
        os.system(f'rm {paths_to_check}')

def resize_depth(depth, width, height):
    """Resize numpy (or image read by imageio) depth map

    Args:
        depth (numpy): depth
        width (int): image width
        height (int): image height

    Returns:
        array: processed depth
    """
    depth = cv2.blur(depth, (3, 3))
    return cv2.resize(depth, (width, height), interpolation=cv2.INTER_AREA)