lambda-eclipse-personalized-t2i / src /priors /lambda_prior_transformer.py
Maitreya Patel
initial setup
0c83406
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
@dataclass
class PriorTransformerOutput(BaseOutput):
"""
The output of [`PriorTransformer`].
Args:
predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
The predicted CLIP image embedding conditioned on the CLIP text embedding input.
"""
predicted_image_embedding: torch.FloatTensor
class PriorTransformer(ModelMixin, ConfigMixin):
"""
A Prior Transformer model.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 32): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
num_layers (`int`, *optional*, defaults to 20): The number of layers of Transformer blocks to use.
embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `hidden_states`
num_embeddings (`int`, *optional*, defaults to 77):
The number of embeddings of the model input `hidden_states`
additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the
projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings +
additional_embeddings`.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
time_embed_act_fn (`str`, *optional*, defaults to 'silu'):
The activation function to use to create timestep embeddings.
norm_in_type (`str`, *optional*, defaults to None): The normalization layer to apply on hidden states before
passing to Transformer blocks. Set it to `None` if normalization is not needed.
embedding_proj_norm_type (`str`, *optional*, defaults to None):
The normalization layer to apply on the input `proj_embedding`. Set it to `None` if normalization is not
needed.
encoder_hid_proj_type (`str`, *optional*, defaults to `linear`):
The projection layer to apply on the input `encoder_hidden_states`. Set it to `None` if
`encoder_hidden_states` is `None`.
added_emb_type (`str`, *optional*, defaults to `prd`): Additional embeddings to condition the model.
Choose from `prd` or `None`. if choose `prd`, it will prepend a token indicating the (quantized) dot
product between the text embedding and image embedding as proposed in the unclip paper
https://arxiv.org/abs/2204.06125 If it is `None`, no additional embeddings will be prepended.
time_embed_dim (`int, *optional*, defaults to None): The dimension of timestep embeddings.
If None, will be set to `num_attention_heads * attention_head_dim`
embedding_proj_dim (`int`, *optional*, default to None):
The dimension of `proj_embedding`. If None, will be set to `embedding_dim`.
clip_embed_dim (`int`, *optional*, default to None):
The dimension of the output. If None, will be set to `embedding_dim`.
"""
@register_to_config
def __init__(
self,
num_attention_heads: int = 32,
attention_head_dim: int = 64,
num_layers: int = 20,
embedding_dim: int = 768,
num_embeddings=77,
additional_embeddings=3, # as we have remvoed the time embedding
dropout: float = 0.0,
# time_embed_act_fn: str = "silu",
norm_in_type: Optional[str] = None, # layer
embedding_proj_norm_type: Optional[str] = None, # layer
encoder_hid_proj_type: Optional[str] = "linear", # linear
added_emb_type: Optional[str] = "prd", # prd
# time_embed_dim: Optional[int] = None,
embedding_proj_dim: Optional[int] = None,
clip_embed_dim: Optional[int] = None,
):
super().__init__()
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.additional_embeddings = additional_embeddings
# time_embed_dim = time_embed_dim or inner_dim
embedding_proj_dim = embedding_proj_dim or embedding_dim
clip_embed_dim = clip_embed_dim or embedding_dim
# self.time_proj = Timesteps(inner_dim, True, 0)
# self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, out_dim=inner_dim, act_fn=time_embed_act_fn)
self.proj_in = nn.Linear(embedding_dim, inner_dim)
if embedding_proj_norm_type is None:
self.embedding_proj_norm = None
elif embedding_proj_norm_type == "layer":
self.embedding_proj_norm = nn.LayerNorm(embedding_proj_dim)
else:
raise ValueError(f"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}")
self.embedding_proj = nn.Linear(embedding_proj_dim, inner_dim)
self.embedding_control = nn.Linear(embedding_proj_dim, inner_dim)
if encoder_hid_proj_type is None:
self.encoder_hidden_states_proj = None
elif encoder_hid_proj_type == "linear":
self.encoder_hidden_states_proj = nn.Linear(embedding_dim, inner_dim)
else:
raise ValueError(f"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}")
self.positional_embedding = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, inner_dim))
if added_emb_type == "prd":
self.prd_embedding = nn.Parameter(torch.zeros(1, 1, inner_dim))
elif added_emb_type is None:
self.prd_embedding = None
else:
raise ValueError(
f"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`."
)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
activation_fn="gelu",
attention_bias=True,
)
for d in range(num_layers)
]
)
if norm_in_type == "layer":
self.norm_in = nn.LayerNorm(inner_dim)
elif norm_in_type is None:
self.norm_in = None
else:
raise ValueError(f"Unsupported norm_in_type: {norm_in_type}.")
self.norm_out = nn.LayerNorm(inner_dim)
self.proj_to_clip_embeddings = nn.Linear(inner_dim, clip_embed_dim)
causal_attention_mask = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -10000.0
)
causal_attention_mask.triu_(1)
causal_attention_mask = causal_attention_mask[None, ...]
self.register_buffer("causal_attention_mask", causal_attention_mask, persistent=False)
self.clip_mean = nn.Parameter(torch.zeros(1, clip_embed_dim))
self.clip_std = nn.Parameter(torch.zeros(1, clip_embed_dim))
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "set_processor"):
processors[f"{name}.processor"] = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
self.set_attn_processor(AttnProcessor())
def forward(
self,
hidden_states,
# timestep: Union[torch.Tensor, float, int],
proj_embedding: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
control_embedding: torch.FloatTensor = None,
return_dict: bool = True,
):
"""
The [`PriorTransformer`] forward method.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
The currently predicted image embeddings.
timestep (`torch.LongTensor`):
Current denoising step.
proj_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
Projected embedding vector the denoising process is conditioned on.
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_embeddings, embedding_dim)`):
Hidden states of the text embeddings the denoising process is conditioned on.
attention_mask (`torch.BoolTensor` of shape `(batch_size, num_embeddings)`):
Text mask for the text embeddings.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.prior_transformer.PriorTransformerOutput`] instead of a plain
tuple.
Returns:
[`~models.prior_transformer.PriorTransformerOutput`] or `tuple`:
If return_dict is True, a [`~models.prior_transformer.PriorTransformerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
batch_size = hidden_states.shape[0]
# timesteps = timestep
# if not torch.is_tensor(timesteps):
# timesteps = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device)
# elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
# timesteps = timesteps[None].to(hidden_states.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
# timesteps = timesteps * torch.ones(batch_size, dtype=timesteps.dtype, device=timesteps.device)
# timesteps_projected = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
# timesteps_projected = timesteps_projected.to(dtype=self.dtype)
# time_embeddings = self.time_embedding(timesteps_projected)
if self.embedding_proj_norm is not None:
proj_embedding = self.embedding_proj_norm(proj_embedding)
proj_embeddings = self.embedding_proj(proj_embedding)
control_embeddings = self.embedding_control(control_embedding)
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
encoder_hidden_states = self.encoder_hidden_states_proj(encoder_hidden_states)
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set")
hidden_states = self.proj_in(hidden_states)
positional_embeddings = self.positional_embedding.to(hidden_states.dtype)
additional_embeds = []
additional_embeddings_len = 0
if encoder_hidden_states is not None:
additional_embeds.append(encoder_hidden_states)
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape) == 2:
proj_embeddings = proj_embeddings[:, None, :]
if len(control_embeddings.shape) == 2:
control_embeddings = control_embeddings[:, None, :]
if len(hidden_states.shape) == 2:
hidden_states = hidden_states[:, None, :]
additional_embeds = additional_embeds + [
control_embeddings,
proj_embeddings,
# time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
prd_embedding = self.prd_embedding.to(hidden_states.dtype).expand(batch_size, -1, -1)
additional_embeds.append(prd_embedding)
hidden_states = torch.cat(
additional_embeds,
dim=1,
)
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
additional_embeddings_len = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
positional_embeddings = F.pad(
positional_embeddings,
(
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
),
value=0.0,
)
hidden_states = hidden_states + positional_embeddings
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = F.pad(attention_mask, (0, self.additional_embeddings), value=0.0)
attention_mask = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype)
attention_mask = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0)
if self.norm_in is not None:
hidden_states = self.norm_in(hidden_states)
for block in self.transformer_blocks:
hidden_states = block(hidden_states, attention_mask=attention_mask)
hidden_states = self.norm_out(hidden_states)
if self.prd_embedding is not None:
hidden_states = hidden_states[:, -1]
else:
hidden_states = hidden_states[:, additional_embeddings_len:]
predicted_image_embedding = self.proj_to_clip_embeddings(hidden_states)
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=predicted_image_embedding)
def post_process_latents(self, prior_latents):
prior_latents = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents