Spaces:
Running
on
Zero
Running
on
Zero
Maitreya Patel
commited on
Commit
·
0c83406
1
Parent(s):
df1b27d
initial setup
Browse files- app.py +222 -0
- assets/a_cat_on_top_of_the_snow_mountain.png +0 -0
- assets/a_cat_wearing_glasses_at_a_park.png +0 -0
- assets/overview_white.png +0 -0
- assets/results.png +0 -0
- requirements.txt +16 -0
- src/pipelines/__init__.py +0 -0
- src/pipelines/__pycache__/__init__.cpython-39.pyc +0 -0
- src/pipelines/__pycache__/pipeline_kandinsky_subject_prior.cpython-39.pyc +0 -0
- src/pipelines/pipeline_kandinsky_prior.py +591 -0
- src/pipelines/pipeline_kandinsky_subject_prior.py +621 -0
- src/priors/__init__.py +0 -0
- src/priors/__pycache__/__init__.cpython-39.pyc +0 -0
- src/priors/__pycache__/lambda_prior_transformer.cpython-39.pyc +0 -0
- src/priors/lambda_prior_transformer.py +373 -0
- src/priors/prior_transformer.py +368 -0
app.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
import pathlib
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
import PIL
|
7 |
+
import torchvision.transforms as T
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import numpy as np
|
10 |
+
import cv2
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
from typing import Any
|
13 |
+
|
14 |
+
from transformers import (
|
15 |
+
CLIPTextModelWithProjection,
|
16 |
+
CLIPVisionModelWithProjection,
|
17 |
+
CLIPImageProcessor,
|
18 |
+
CLIPTokenizer
|
19 |
+
)
|
20 |
+
|
21 |
+
from transformers import CLIPTokenizer
|
22 |
+
from src.priors.lambda_prior_transformer import (
|
23 |
+
PriorTransformer,
|
24 |
+
) # original huggingface prior transformer without time conditioning
|
25 |
+
from src.pipelines.pipeline_kandinsky_subject_prior import KandinskyPriorPipeline
|
26 |
+
|
27 |
+
from diffusers import DiffusionPipeline
|
28 |
+
from PIL import Image
|
29 |
+
|
30 |
+
class Model:
|
31 |
+
def __init__(self):
|
32 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
33 |
+
|
34 |
+
self.text_encoder = (
|
35 |
+
CLIPTextModelWithProjection.from_pretrained(
|
36 |
+
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
37 |
+
projection_dim=1280,
|
38 |
+
torch_dtype=torch.float16,
|
39 |
+
)
|
40 |
+
.eval()
|
41 |
+
.requires_grad_(False)
|
42 |
+
).to("cuda")
|
43 |
+
|
44 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(
|
45 |
+
"laion/CLIP-ViT-bigG-14-laion2B-39B-b160k",
|
46 |
+
)
|
47 |
+
|
48 |
+
prior = PriorTransformer.from_pretrained(
|
49 |
+
"ECLIPSE-Community/Lambda-ECLIPSE-Prior-v1.0",
|
50 |
+
torch_dtype=torch.float16,
|
51 |
+
)
|
52 |
+
|
53 |
+
self.pipe_prior = KandinskyPriorPipeline.from_pretrained(
|
54 |
+
"kandinsky-community/kandinsky-2-2-prior",
|
55 |
+
prior=prior,
|
56 |
+
torch_dtype=torch.float16,
|
57 |
+
).to(self.device)
|
58 |
+
|
59 |
+
self.pipe = DiffusionPipeline.from_pretrained(
|
60 |
+
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
|
61 |
+
).to(self.device)
|
62 |
+
|
63 |
+
def inference(self, raw_data):
|
64 |
+
image_emb, negative_image_emb = self.pipe_prior(
|
65 |
+
raw_data=raw_data,
|
66 |
+
).to_tuple()
|
67 |
+
image = self.pipe(
|
68 |
+
image_embeds=image_emb,
|
69 |
+
negative_image_embeds=negative_image_emb,
|
70 |
+
num_inference_steps=50,
|
71 |
+
guidance_scale=4.0,
|
72 |
+
).images[0]
|
73 |
+
return image
|
74 |
+
|
75 |
+
def process_data(self,
|
76 |
+
image: PIL.Image.Image,
|
77 |
+
keyword: str,
|
78 |
+
image2: PIL.Image.Image,
|
79 |
+
keyword2: str,
|
80 |
+
text: str,
|
81 |
+
) -> dict[str, Any]:
|
82 |
+
print(f"keyword : {keyword}, keyword2 : {keyword2}, prompt : {text}")
|
83 |
+
device = torch.device(self.device)
|
84 |
+
data: dict[str, Any] = {}
|
85 |
+
data['text'] = text
|
86 |
+
|
87 |
+
txt = self.tokenizer(
|
88 |
+
text,
|
89 |
+
padding='max_length',
|
90 |
+
truncation=True,
|
91 |
+
return_tensors='pt',
|
92 |
+
)
|
93 |
+
txt_items = {k: v.to(device) for k, v in txt.items()}
|
94 |
+
new_feats = self.text_encoder(**txt_items)
|
95 |
+
new_last_hidden_states = new_feats.last_hidden_state[0].cpu().numpy()
|
96 |
+
|
97 |
+
plt.imshow(image)
|
98 |
+
plt.title('image')
|
99 |
+
plt.savefig('image_testt2.png')
|
100 |
+
plt.show()
|
101 |
+
|
102 |
+
mask_img = self.image_processor(image, return_tensors="pt").to("cuda")
|
103 |
+
vision_feats = self.vision_encoder(
|
104 |
+
**mask_img
|
105 |
+
).image_embeds
|
106 |
+
|
107 |
+
entity_tokens = self.tokenizer(keyword)["input_ids"][1:-1]
|
108 |
+
for tid in entity_tokens:
|
109 |
+
indices = np.where(txt_items["input_ids"][0].cpu().numpy() == tid)[0]
|
110 |
+
new_last_hidden_states[indices] = vision_feats[0].cpu().numpy()
|
111 |
+
print(indices)
|
112 |
+
|
113 |
+
if image2 is not None:
|
114 |
+
mask_img2 = self.image_processor(image2, return_tensors="pt").to("cuda")
|
115 |
+
vision_feats2 = self.vision_encoder(
|
116 |
+
**mask_img2
|
117 |
+
).image_embeds
|
118 |
+
if keyword2 is not None:
|
119 |
+
entity_tokens = self.tokenizer(keyword2)["input_ids"][1:-1]
|
120 |
+
for tid in entity_tokens:
|
121 |
+
indices = np.where(txt_items["input_ids"][0].cpu().numpy() == tid)[0]
|
122 |
+
new_last_hidden_states[indices] = vision_feats2[0].cpu().numpy()
|
123 |
+
print(indices)
|
124 |
+
|
125 |
+
text_feats = {
|
126 |
+
"prompt_embeds": new_feats.text_embeds.to("cuda"),
|
127 |
+
"text_encoder_hidden_states": torch.tensor(new_last_hidden_states).unsqueeze(0).to("cuda"),
|
128 |
+
"text_mask": txt_items["attention_mask"].to("cuda"),
|
129 |
+
}
|
130 |
+
return text_feats
|
131 |
+
|
132 |
+
def run(self,
|
133 |
+
image: dict[str, PIL.Image.Image],
|
134 |
+
keyword: str,
|
135 |
+
image2: dict[str, PIL.Image.Image],
|
136 |
+
keyword2: str,
|
137 |
+
text: str,
|
138 |
+
):
|
139 |
+
|
140 |
+
# aug_feats = self.process_data(image["composite"], keyword, image2["composite"], keyword2, text)
|
141 |
+
sub_imgs = [image["composite"]]
|
142 |
+
if image2:
|
143 |
+
sub_imgs.append(image2["composite"])
|
144 |
+
sun_keywords = [keyword]
|
145 |
+
if keyword2:
|
146 |
+
sun_keywords.append(keyword2)
|
147 |
+
raw_data = {
|
148 |
+
"prompt": text,
|
149 |
+
"subject_images": sub_imgs,
|
150 |
+
"subject_keywords": sun_keywords
|
151 |
+
}
|
152 |
+
image = self.inference(raw_data)
|
153 |
+
return image
|
154 |
+
|
155 |
+
def create_demo():
|
156 |
+
TITLE = '# [λ-Eclipse Demo](https://eclipse-t2i.github.io/Lambda-ECLIPSE/)'
|
157 |
+
|
158 |
+
USAGE = '''To run the demo, you should:
|
159 |
+
1. Upload your image.
|
160 |
+
2. <span style='color: red;'>**Upload a masked subject image with white blankspace or whiten out manually using brush tool.**
|
161 |
+
3. Input a Keyword i.e. 'Dog'
|
162 |
+
4. For MultiSubject personalization,
|
163 |
+
4-1. Upload another image.
|
164 |
+
4-2. Input the Keyword i.e. 'Sunglasses'
|
165 |
+
3. Input proper text prompts, such as "A photo of Dog" or "A Dog wearing sunglasses", Please use the same keyword in the prompt.
|
166 |
+
4. Click the Run button.
|
167 |
+
'''
|
168 |
+
|
169 |
+
model = Model()
|
170 |
+
|
171 |
+
with gr.Blocks() as demo:
|
172 |
+
gr.Markdown(TITLE)
|
173 |
+
gr.Markdown(USAGE)
|
174 |
+
with gr.Row():
|
175 |
+
with gr.Column():
|
176 |
+
with gr.Group():
|
177 |
+
gr.Markdown(
|
178 |
+
'Upload your first masked subject image or mask out marginal space')
|
179 |
+
image = gr.ImageEditor(label='Input', type='pil', brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
180 |
+
keyword = gr.Text(
|
181 |
+
label='Keyword',
|
182 |
+
placeholder='e.g. "Dog", "Goofie"',
|
183 |
+
info='Keyword for first subject')
|
184 |
+
gr.Markdown(
|
185 |
+
'For Multi-Subject generation : Upload your second masked subject image or mask out marginal space')
|
186 |
+
image2 = gr.ImageEditor(label='Input', type='pil', brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
187 |
+
keyword2= gr.Text(
|
188 |
+
label='Keyword',
|
189 |
+
placeholder='e.g. "Sunglasses", "Grand Canyon"',
|
190 |
+
info='Keyword for second subject')
|
191 |
+
prompt = gr.Text(
|
192 |
+
label='Prompt',
|
193 |
+
placeholder='e.g. "A photo of dog", "A dog wearing sunglasses"',
|
194 |
+
info='Keep the keywords used previously in the prompt')
|
195 |
+
|
196 |
+
run_button = gr.Button('Run')
|
197 |
+
|
198 |
+
with gr.Column():
|
199 |
+
result = gr.Image(label='Result')
|
200 |
+
|
201 |
+
inputs = [
|
202 |
+
image,
|
203 |
+
keyword,
|
204 |
+
image2,
|
205 |
+
keyword2,
|
206 |
+
prompt,
|
207 |
+
]
|
208 |
+
|
209 |
+
gr.Examples(
|
210 |
+
examples=[[os.path.join(os.path.dirname(__file__), "./assets/cat.png"), "cat", os.path.join(os.path.dirname(__file__), "./assets/blue_sunglasses.png"), "glasses", "A cat wearing glasses on a snowy field"]],
|
211 |
+
inputs = inputs,
|
212 |
+
fn=model.run,
|
213 |
+
outputs=result,
|
214 |
+
)
|
215 |
+
|
216 |
+
run_button.click(fn=model.run, inputs=inputs, outputs=result)
|
217 |
+
return demo
|
218 |
+
|
219 |
+
|
220 |
+
if __name__ == '__main__':
|
221 |
+
demo = create_demo()
|
222 |
+
demo.queue(api_open=False).launch(share=True)
|
assets/a_cat_on_top_of_the_snow_mountain.png
ADDED
assets/a_cat_wearing_glasses_at_a_park.png
ADDED
assets/overview_white.png
ADDED
assets/results.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate
|
2 |
+
datasets
|
3 |
+
diffusers==0.24.0
|
4 |
+
numpy==1.26.1
|
5 |
+
packaging==23.2
|
6 |
+
pandas_stubs==1.2.0.57
|
7 |
+
Pillow==10.1.0
|
8 |
+
torch==2.0.0
|
9 |
+
torchvision==0.15.1
|
10 |
+
tqdm==4.66.1
|
11 |
+
transformers
|
12 |
+
gradio
|
13 |
+
jmespath
|
14 |
+
opencv-python
|
15 |
+
PyWavelet
|
16 |
+
gradio
|
src/pipelines/__init__.py
ADDED
File without changes
|
src/pipelines/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (193 Bytes). View file
|
|
src/pipelines/__pycache__/pipeline_kandinsky_subject_prior.cpython-39.pyc
ADDED
Binary file (18.1 kB). View file
|
|
src/pipelines/pipeline_kandinsky_prior.py
ADDED
@@ -0,0 +1,591 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Optional, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import PIL
|
6 |
+
import torch
|
7 |
+
from transformers import (
|
8 |
+
CLIPImageProcessor,
|
9 |
+
CLIPTextModelWithProjection,
|
10 |
+
CLIPTokenizer,
|
11 |
+
CLIPVisionModelWithProjection,
|
12 |
+
)
|
13 |
+
|
14 |
+
from diffusers.models import PriorTransformer
|
15 |
+
from diffusers.schedulers import UnCLIPScheduler
|
16 |
+
from diffusers.utils import (
|
17 |
+
BaseOutput,
|
18 |
+
is_accelerate_available,
|
19 |
+
is_accelerate_version,
|
20 |
+
logging,
|
21 |
+
randn_tensor,
|
22 |
+
replace_example_docstring,
|
23 |
+
)
|
24 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
28 |
+
|
29 |
+
EXAMPLE_DOC_STRING = """
|
30 |
+
Examples:
|
31 |
+
```py
|
32 |
+
>>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline
|
33 |
+
>>> import torch
|
34 |
+
|
35 |
+
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior")
|
36 |
+
>>> pipe_prior.to("cuda")
|
37 |
+
|
38 |
+
>>> prompt = "red cat, 4k photo"
|
39 |
+
>>> out = pipe_prior(prompt)
|
40 |
+
>>> image_emb = out.image_embeds
|
41 |
+
>>> negative_image_emb = out.negative_image_embeds
|
42 |
+
|
43 |
+
>>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")
|
44 |
+
>>> pipe.to("cuda")
|
45 |
+
|
46 |
+
>>> image = pipe(
|
47 |
+
... prompt,
|
48 |
+
... image_embeds=image_emb,
|
49 |
+
... negative_image_embeds=negative_image_emb,
|
50 |
+
... height=768,
|
51 |
+
... width=768,
|
52 |
+
... num_inference_steps=100,
|
53 |
+
... ).images
|
54 |
+
|
55 |
+
>>> image[0].save("cat.png")
|
56 |
+
```
|
57 |
+
"""
|
58 |
+
|
59 |
+
EXAMPLE_INTERPOLATE_DOC_STRING = """
|
60 |
+
Examples:
|
61 |
+
```py
|
62 |
+
>>> from diffusers import KandinskyPriorPipeline, KandinskyPipeline
|
63 |
+
>>> from diffusers.utils import load_image
|
64 |
+
>>> import PIL
|
65 |
+
|
66 |
+
>>> import torch
|
67 |
+
>>> from torchvision import transforms
|
68 |
+
|
69 |
+
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained(
|
70 |
+
... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
|
71 |
+
... )
|
72 |
+
>>> pipe_prior.to("cuda")
|
73 |
+
|
74 |
+
>>> img1 = load_image(
|
75 |
+
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
76 |
+
... "/kandinsky/cat.png"
|
77 |
+
... )
|
78 |
+
|
79 |
+
>>> img2 = load_image(
|
80 |
+
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
81 |
+
... "/kandinsky/starry_night.jpeg"
|
82 |
+
... )
|
83 |
+
|
84 |
+
>>> images_texts = ["a cat", img1, img2]
|
85 |
+
>>> weights = [0.3, 0.3, 0.4]
|
86 |
+
>>> image_emb, zero_image_emb = pipe_prior.interpolate(images_texts, weights)
|
87 |
+
|
88 |
+
>>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
|
89 |
+
>>> pipe.to("cuda")
|
90 |
+
|
91 |
+
>>> image = pipe(
|
92 |
+
... "",
|
93 |
+
... image_embeds=image_emb,
|
94 |
+
... negative_image_embeds=zero_image_emb,
|
95 |
+
... height=768,
|
96 |
+
... width=768,
|
97 |
+
... num_inference_steps=150,
|
98 |
+
... ).images[0]
|
99 |
+
|
100 |
+
>>> image.save("starry_cat.png")
|
101 |
+
```
|
102 |
+
"""
|
103 |
+
|
104 |
+
|
105 |
+
@dataclass
|
106 |
+
class KandinskyPriorPipelineOutput(BaseOutput):
|
107 |
+
"""
|
108 |
+
Output class for KandinskyPriorPipeline.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
image_embeds (`torch.FloatTensor`)
|
112 |
+
clip image embeddings for text prompt
|
113 |
+
negative_image_embeds (`List[PIL.Image.Image]` or `np.ndarray`)
|
114 |
+
clip image embeddings for unconditional tokens
|
115 |
+
"""
|
116 |
+
|
117 |
+
image_embeds: Union[torch.FloatTensor, np.ndarray]
|
118 |
+
negative_image_embeds: Union[torch.FloatTensor, np.ndarray]
|
119 |
+
|
120 |
+
|
121 |
+
class KandinskyPriorPipeline(DiffusionPipeline):
|
122 |
+
"""
|
123 |
+
Pipeline for generating image prior for Kandinsky
|
124 |
+
|
125 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
126 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
127 |
+
|
128 |
+
Args:
|
129 |
+
prior ([`PriorTransformer`]):
|
130 |
+
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
|
131 |
+
image_encoder ([`CLIPVisionModelWithProjection`]):
|
132 |
+
Frozen image-encoder.
|
133 |
+
text_encoder ([`CLIPTextModelWithProjection`]):
|
134 |
+
Frozen text-encoder.
|
135 |
+
tokenizer (`CLIPTokenizer`):
|
136 |
+
Tokenizer of class
|
137 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
138 |
+
scheduler ([`UnCLIPScheduler`]):
|
139 |
+
A scheduler to be used in combination with `prior` to generate image embedding.
|
140 |
+
"""
|
141 |
+
|
142 |
+
_exclude_from_cpu_offload = ["prior"]
|
143 |
+
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
prior: PriorTransformer,
|
147 |
+
image_encoder: CLIPVisionModelWithProjection,
|
148 |
+
text_encoder: CLIPTextModelWithProjection,
|
149 |
+
tokenizer: CLIPTokenizer,
|
150 |
+
scheduler: UnCLIPScheduler,
|
151 |
+
image_processor: CLIPImageProcessor,
|
152 |
+
):
|
153 |
+
super().__init__()
|
154 |
+
|
155 |
+
self.register_modules(
|
156 |
+
prior=prior,
|
157 |
+
text_encoder=text_encoder,
|
158 |
+
tokenizer=tokenizer,
|
159 |
+
scheduler=scheduler,
|
160 |
+
image_encoder=image_encoder,
|
161 |
+
image_processor=image_processor,
|
162 |
+
)
|
163 |
+
|
164 |
+
@torch.no_grad()
|
165 |
+
@replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING)
|
166 |
+
def interpolate(
|
167 |
+
self,
|
168 |
+
images_and_prompts: List[Union[str, PIL.Image.Image, torch.FloatTensor]],
|
169 |
+
weights: List[float],
|
170 |
+
num_images_per_prompt: int = 1,
|
171 |
+
num_inference_steps: int = 25,
|
172 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
173 |
+
latents: Optional[torch.FloatTensor] = None,
|
174 |
+
negative_prior_prompt: Optional[str] = None,
|
175 |
+
negative_prompt: str = "",
|
176 |
+
guidance_scale: float = 4.0,
|
177 |
+
device=None,
|
178 |
+
):
|
179 |
+
"""
|
180 |
+
Function invoked when using the prior pipeline for interpolation.
|
181 |
+
|
182 |
+
Args:
|
183 |
+
images_and_prompts (`List[Union[str, PIL.Image.Image, torch.FloatTensor]]`):
|
184 |
+
list of prompts and images to guide the image generation.
|
185 |
+
weights: (`List[float]`):
|
186 |
+
list of weights for each condition in `images_and_prompts`
|
187 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
188 |
+
The number of images to generate per prompt.
|
189 |
+
num_inference_steps (`int`, *optional*, defaults to 25):
|
190 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
191 |
+
expense of slower inference.
|
192 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
193 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
194 |
+
to make generation deterministic.
|
195 |
+
latents (`torch.FloatTensor`, *optional*):
|
196 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
197 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
198 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
199 |
+
negative_prior_prompt (`str`, *optional*):
|
200 |
+
The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if
|
201 |
+
`guidance_scale` is less than `1`).
|
202 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
203 |
+
The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if
|
204 |
+
`guidance_scale` is less than `1`).
|
205 |
+
guidance_scale (`float`, *optional*, defaults to 4.0):
|
206 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
207 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
208 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
209 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
210 |
+
usually at the expense of lower image quality.
|
211 |
+
|
212 |
+
Examples:
|
213 |
+
|
214 |
+
Returns:
|
215 |
+
[`KandinskyPriorPipelineOutput`] or `tuple`
|
216 |
+
"""
|
217 |
+
|
218 |
+
device = device or self.device
|
219 |
+
|
220 |
+
if len(images_and_prompts) != len(weights):
|
221 |
+
raise ValueError(
|
222 |
+
f"`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length"
|
223 |
+
)
|
224 |
+
|
225 |
+
image_embeddings = []
|
226 |
+
for cond, weight in zip(images_and_prompts, weights):
|
227 |
+
if isinstance(cond, str):
|
228 |
+
image_emb = self(
|
229 |
+
cond,
|
230 |
+
num_inference_steps=num_inference_steps,
|
231 |
+
num_images_per_prompt=num_images_per_prompt,
|
232 |
+
generator=generator,
|
233 |
+
latents=latents,
|
234 |
+
negative_prompt=negative_prior_prompt,
|
235 |
+
guidance_scale=guidance_scale,
|
236 |
+
).image_embeds
|
237 |
+
|
238 |
+
elif isinstance(cond, (PIL.Image.Image, torch.Tensor)):
|
239 |
+
if isinstance(cond, PIL.Image.Image):
|
240 |
+
cond = (
|
241 |
+
self.image_processor(cond, return_tensors="pt")
|
242 |
+
.pixel_values[0]
|
243 |
+
.unsqueeze(0)
|
244 |
+
.to(dtype=self.image_encoder.dtype, device=device)
|
245 |
+
)
|
246 |
+
|
247 |
+
image_emb = self.image_encoder(cond)["image_embeds"]
|
248 |
+
|
249 |
+
else:
|
250 |
+
raise ValueError(
|
251 |
+
f"`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor` but is {type(cond)}"
|
252 |
+
)
|
253 |
+
|
254 |
+
image_embeddings.append(image_emb * weight)
|
255 |
+
|
256 |
+
image_emb = torch.cat(image_embeddings).sum(dim=0, keepdim=True)
|
257 |
+
|
258 |
+
out_zero = self(
|
259 |
+
negative_prompt,
|
260 |
+
num_inference_steps=num_inference_steps,
|
261 |
+
num_images_per_prompt=num_images_per_prompt,
|
262 |
+
generator=generator,
|
263 |
+
latents=latents,
|
264 |
+
negative_prompt=negative_prior_prompt,
|
265 |
+
guidance_scale=guidance_scale,
|
266 |
+
)
|
267 |
+
zero_image_emb = (
|
268 |
+
out_zero.negative_image_embeds
|
269 |
+
if negative_prompt == ""
|
270 |
+
else out_zero.image_embeds
|
271 |
+
)
|
272 |
+
|
273 |
+
return KandinskyPriorPipelineOutput(
|
274 |
+
image_embeds=image_emb, negative_image_embeds=zero_image_emb
|
275 |
+
)
|
276 |
+
|
277 |
+
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
|
278 |
+
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
|
279 |
+
if latents is None:
|
280 |
+
latents = randn_tensor(
|
281 |
+
shape, generator=generator, device=device, dtype=dtype
|
282 |
+
)
|
283 |
+
else:
|
284 |
+
if latents.shape != shape:
|
285 |
+
raise ValueError(
|
286 |
+
f"Unexpected latents shape, got {latents.shape}, expected {shape}"
|
287 |
+
)
|
288 |
+
latents = latents.to(device)
|
289 |
+
|
290 |
+
latents = latents * scheduler.init_noise_sigma
|
291 |
+
return latents
|
292 |
+
|
293 |
+
def get_zero_embed(self, batch_size=1, device=None):
|
294 |
+
device = device or self.device
|
295 |
+
zero_img = torch.zeros(
|
296 |
+
1,
|
297 |
+
3,
|
298 |
+
self.image_encoder.config.image_size,
|
299 |
+
self.image_encoder.config.image_size,
|
300 |
+
).to(device=device, dtype=self.image_encoder.dtype)
|
301 |
+
zero_image_emb = self.image_encoder(zero_img)["image_embeds"]
|
302 |
+
zero_image_emb = zero_image_emb.repeat(batch_size, 1)
|
303 |
+
return zero_image_emb
|
304 |
+
|
305 |
+
def _encode_prompt(
|
306 |
+
self,
|
307 |
+
prompt,
|
308 |
+
device,
|
309 |
+
num_images_per_prompt,
|
310 |
+
do_classifier_free_guidance,
|
311 |
+
negative_prompt=None,
|
312 |
+
):
|
313 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
314 |
+
# get prompt text embeddings
|
315 |
+
text_inputs = self.tokenizer(
|
316 |
+
prompt,
|
317 |
+
padding="max_length",
|
318 |
+
max_length=self.tokenizer.model_max_length,
|
319 |
+
truncation=True,
|
320 |
+
return_tensors="pt",
|
321 |
+
)
|
322 |
+
text_input_ids = text_inputs.input_ids
|
323 |
+
text_mask = text_inputs.attention_mask.bool().to(device)
|
324 |
+
|
325 |
+
untruncated_ids = self.tokenizer(
|
326 |
+
prompt, padding="longest", return_tensors="pt"
|
327 |
+
).input_ids
|
328 |
+
|
329 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
330 |
+
text_input_ids, untruncated_ids
|
331 |
+
):
|
332 |
+
removed_text = self.tokenizer.batch_decode(
|
333 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
334 |
+
)
|
335 |
+
logger.warning(
|
336 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
337 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
338 |
+
)
|
339 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
340 |
+
|
341 |
+
text_encoder_output = self.text_encoder(text_input_ids.to(device))
|
342 |
+
|
343 |
+
prompt_embeds = text_encoder_output.text_embeds
|
344 |
+
text_encoder_hidden_states = text_encoder_output.last_hidden_state
|
345 |
+
|
346 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
347 |
+
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(
|
348 |
+
num_images_per_prompt, dim=0
|
349 |
+
)
|
350 |
+
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
|
351 |
+
|
352 |
+
if do_classifier_free_guidance:
|
353 |
+
uncond_tokens: List[str]
|
354 |
+
if negative_prompt is None:
|
355 |
+
uncond_tokens = [""] * batch_size
|
356 |
+
elif type(prompt) is not type(negative_prompt):
|
357 |
+
raise TypeError(
|
358 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
359 |
+
f" {type(prompt)}."
|
360 |
+
)
|
361 |
+
elif isinstance(negative_prompt, str):
|
362 |
+
uncond_tokens = [negative_prompt]
|
363 |
+
elif batch_size != len(negative_prompt):
|
364 |
+
raise ValueError(
|
365 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
366 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
367 |
+
" the batch size of `prompt`."
|
368 |
+
)
|
369 |
+
else:
|
370 |
+
uncond_tokens = negative_prompt
|
371 |
+
|
372 |
+
uncond_input = self.tokenizer(
|
373 |
+
uncond_tokens,
|
374 |
+
padding="max_length",
|
375 |
+
max_length=self.tokenizer.model_max_length,
|
376 |
+
truncation=True,
|
377 |
+
return_tensors="pt",
|
378 |
+
)
|
379 |
+
uncond_text_mask = uncond_input.attention_mask.bool().to(device)
|
380 |
+
negative_prompt_embeds_text_encoder_output = self.text_encoder(
|
381 |
+
uncond_input.input_ids.to(device)
|
382 |
+
)
|
383 |
+
|
384 |
+
negative_prompt_embeds = (
|
385 |
+
negative_prompt_embeds_text_encoder_output.text_embeds
|
386 |
+
)
|
387 |
+
uncond_text_encoder_hidden_states = (
|
388 |
+
negative_prompt_embeds_text_encoder_output.last_hidden_state
|
389 |
+
)
|
390 |
+
|
391 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
392 |
+
|
393 |
+
seq_len = negative_prompt_embeds.shape[1]
|
394 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
395 |
+
1, num_images_per_prompt
|
396 |
+
)
|
397 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
398 |
+
batch_size * num_images_per_prompt, seq_len
|
399 |
+
)
|
400 |
+
|
401 |
+
seq_len = uncond_text_encoder_hidden_states.shape[1]
|
402 |
+
uncond_text_encoder_hidden_states = (
|
403 |
+
uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
|
404 |
+
)
|
405 |
+
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
|
406 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
407 |
+
)
|
408 |
+
uncond_text_mask = uncond_text_mask.repeat_interleave(
|
409 |
+
num_images_per_prompt, dim=0
|
410 |
+
)
|
411 |
+
|
412 |
+
# done duplicates
|
413 |
+
|
414 |
+
# For classifier free guidance, we need to do two forward passes.
|
415 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
416 |
+
# to avoid doing two forward passes
|
417 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
418 |
+
text_encoder_hidden_states = torch.cat(
|
419 |
+
[uncond_text_encoder_hidden_states, text_encoder_hidden_states]
|
420 |
+
)
|
421 |
+
|
422 |
+
text_mask = torch.cat([uncond_text_mask, text_mask])
|
423 |
+
|
424 |
+
return prompt_embeds, text_encoder_hidden_states, text_mask
|
425 |
+
|
426 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
427 |
+
r"""
|
428 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
429 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
430 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
431 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
432 |
+
"""
|
433 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
434 |
+
from accelerate import cpu_offload_with_hook
|
435 |
+
else:
|
436 |
+
raise ImportError(
|
437 |
+
"`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher."
|
438 |
+
)
|
439 |
+
|
440 |
+
device = torch.device(f"cuda:{gpu_id}")
|
441 |
+
|
442 |
+
if self.device.type != "cpu":
|
443 |
+
self.to("cpu", silence_dtype_warnings=True)
|
444 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
445 |
+
|
446 |
+
hook = None
|
447 |
+
for cpu_offloaded_model in [self.text_encoder, self.prior]:
|
448 |
+
_, hook = cpu_offload_with_hook(
|
449 |
+
cpu_offloaded_model, device, prev_module_hook=hook
|
450 |
+
)
|
451 |
+
|
452 |
+
# We'll offload the last model manually.
|
453 |
+
self.prior_hook = hook
|
454 |
+
|
455 |
+
_, hook = cpu_offload_with_hook(
|
456 |
+
self.image_encoder, device, prev_module_hook=self.prior_hook
|
457 |
+
)
|
458 |
+
|
459 |
+
self.final_offload_hook = hook
|
460 |
+
|
461 |
+
@torch.no_grad()
|
462 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
463 |
+
def __call__(
|
464 |
+
self,
|
465 |
+
prompt: Union[str, List[str]],
|
466 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
467 |
+
num_images_per_prompt: int = 1,
|
468 |
+
num_inference_steps: int = 25,
|
469 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
470 |
+
latents: Optional[torch.FloatTensor] = None,
|
471 |
+
guidance_scale: float = 4.0,
|
472 |
+
output_type: Optional[str] = "pt",
|
473 |
+
return_dict: bool = True,
|
474 |
+
):
|
475 |
+
"""
|
476 |
+
Function invoked when calling the pipeline for generation.
|
477 |
+
|
478 |
+
Args:
|
479 |
+
prompt (`str` or `List[str]`):
|
480 |
+
The prompt or prompts to guide the image generation.
|
481 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
482 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
483 |
+
if `guidance_scale` is less than `1`).
|
484 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
485 |
+
The number of images to generate per prompt.
|
486 |
+
num_inference_steps (`int`, *optional*, defaults to 25):
|
487 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
488 |
+
expense of slower inference.
|
489 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
490 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
491 |
+
to make generation deterministic.
|
492 |
+
latents (`torch.FloatTensor`, *optional*):
|
493 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
494 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
495 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
496 |
+
guidance_scale (`float`, *optional*, defaults to 4.0):
|
497 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
498 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
499 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
500 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
501 |
+
usually at the expense of lower image quality.
|
502 |
+
output_type (`str`, *optional*, defaults to `"pt"`):
|
503 |
+
The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"`
|
504 |
+
(`torch.Tensor`).
|
505 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
506 |
+
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
|
507 |
+
|
508 |
+
Examples:
|
509 |
+
|
510 |
+
Returns:
|
511 |
+
[`KandinskyPriorPipelineOutput`] or `tuple`
|
512 |
+
"""
|
513 |
+
|
514 |
+
if isinstance(prompt, str):
|
515 |
+
prompt = [prompt]
|
516 |
+
elif not isinstance(prompt, list):
|
517 |
+
raise ValueError(
|
518 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
519 |
+
)
|
520 |
+
|
521 |
+
if isinstance(negative_prompt, str):
|
522 |
+
negative_prompt = [negative_prompt]
|
523 |
+
elif not isinstance(negative_prompt, list) and negative_prompt is not None:
|
524 |
+
raise ValueError(
|
525 |
+
f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}"
|
526 |
+
)
|
527 |
+
|
528 |
+
# if the negative prompt is defined we double the batch size to
|
529 |
+
# directly retrieve the negative prompt embedding
|
530 |
+
if negative_prompt is not None:
|
531 |
+
prompt = prompt + negative_prompt
|
532 |
+
negative_prompt = 2 * negative_prompt
|
533 |
+
|
534 |
+
device = self._execution_device
|
535 |
+
|
536 |
+
batch_size = len(prompt)
|
537 |
+
batch_size = batch_size * num_images_per_prompt
|
538 |
+
|
539 |
+
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt(
|
540 |
+
prompt, device, num_images_per_prompt, False, negative_prompt
|
541 |
+
)
|
542 |
+
|
543 |
+
hidden_states = randn_tensor(
|
544 |
+
(batch_size, prompt_embeds.shape[-1]),
|
545 |
+
device=prompt_embeds.device,
|
546 |
+
dtype=prompt_embeds.dtype,
|
547 |
+
generator=generator,
|
548 |
+
)
|
549 |
+
|
550 |
+
latents = self.prior(
|
551 |
+
hidden_states,
|
552 |
+
proj_embedding=prompt_embeds,
|
553 |
+
encoder_hidden_states=text_encoder_hidden_states,
|
554 |
+
attention_mask=text_mask,
|
555 |
+
).predicted_image_embedding
|
556 |
+
|
557 |
+
image_embeddings = latents
|
558 |
+
|
559 |
+
# if negative prompt has been defined, we retrieve split the image embedding into two
|
560 |
+
if negative_prompt is None:
|
561 |
+
zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device)
|
562 |
+
|
563 |
+
if (
|
564 |
+
hasattr(self, "final_offload_hook")
|
565 |
+
and self.final_offload_hook is not None
|
566 |
+
):
|
567 |
+
self.final_offload_hook.offload()
|
568 |
+
else:
|
569 |
+
image_embeddings, zero_embeds = image_embeddings.chunk(2)
|
570 |
+
|
571 |
+
if (
|
572 |
+
hasattr(self, "final_offload_hook")
|
573 |
+
and self.final_offload_hook is not None
|
574 |
+
):
|
575 |
+
self.prior_hook.offload()
|
576 |
+
|
577 |
+
if output_type not in ["pt", "np"]:
|
578 |
+
raise ValueError(
|
579 |
+
f"Only the output types `pt` and `np` are supported not output_type={output_type}"
|
580 |
+
)
|
581 |
+
|
582 |
+
if output_type == "np":
|
583 |
+
image_embeddings = image_embeddings.cpu().numpy()
|
584 |
+
zero_embeds = zero_embeds.cpu().numpy()
|
585 |
+
|
586 |
+
if not return_dict:
|
587 |
+
return (image_embeddings, zero_embeds)
|
588 |
+
|
589 |
+
return KandinskyPriorPipelineOutput(
|
590 |
+
image_embeds=image_embeddings, negative_image_embeds=zero_embeds
|
591 |
+
)
|
src/pipelines/pipeline_kandinsky_subject_prior.py
ADDED
@@ -0,0 +1,621 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Optional, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import PIL
|
7 |
+
import torch
|
8 |
+
from transformers import (
|
9 |
+
CLIPImageProcessor,
|
10 |
+
CLIPTextModelWithProjection,
|
11 |
+
CLIPTokenizer,
|
12 |
+
CLIPVisionModelWithProjection,
|
13 |
+
)
|
14 |
+
|
15 |
+
from diffusers.models import PriorTransformer
|
16 |
+
from diffusers.schedulers import UnCLIPScheduler
|
17 |
+
from diffusers.utils import (
|
18 |
+
BaseOutput,
|
19 |
+
is_accelerate_available,
|
20 |
+
is_accelerate_version,
|
21 |
+
logging,
|
22 |
+
# randn_tensor,
|
23 |
+
replace_example_docstring,
|
24 |
+
)
|
25 |
+
from diffusers.utils.torch_utils import randn_tensor
|
26 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
30 |
+
|
31 |
+
EXAMPLE_DOC_STRING = """
|
32 |
+
Examples:
|
33 |
+
```py
|
34 |
+
>>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline
|
35 |
+
>>> import torch
|
36 |
+
|
37 |
+
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-1-prior")
|
38 |
+
>>> pipe_prior.to("cuda")
|
39 |
+
|
40 |
+
>>> prompt = "red cat, 4k photo"
|
41 |
+
>>> out = pipe_prior(prompt)
|
42 |
+
>>> image_emb = out.image_embeds
|
43 |
+
>>> negative_image_emb = out.negative_image_embeds
|
44 |
+
|
45 |
+
>>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")
|
46 |
+
>>> pipe.to("cuda")
|
47 |
+
|
48 |
+
>>> image = pipe(
|
49 |
+
... prompt,
|
50 |
+
... image_embeds=image_emb,
|
51 |
+
... negative_image_embeds=negative_image_emb,
|
52 |
+
... height=768,
|
53 |
+
... width=768,
|
54 |
+
... num_inference_steps=100,
|
55 |
+
... ).images
|
56 |
+
|
57 |
+
>>> image[0].save("cat.png")
|
58 |
+
```
|
59 |
+
"""
|
60 |
+
|
61 |
+
EXAMPLE_INTERPOLATE_DOC_STRING = """
|
62 |
+
Examples:
|
63 |
+
```py
|
64 |
+
>>> from diffusers import KandinskyPriorPipeline, KandinskyPipeline
|
65 |
+
>>> from diffusers.utils import load_image
|
66 |
+
>>> import PIL
|
67 |
+
|
68 |
+
>>> import torch
|
69 |
+
>>> from torchvision import transforms
|
70 |
+
|
71 |
+
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained(
|
72 |
+
... "kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
|
73 |
+
... )
|
74 |
+
>>> pipe_prior.to("cuda")
|
75 |
+
|
76 |
+
>>> img1 = load_image(
|
77 |
+
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
78 |
+
... "/kandinsky/cat.png"
|
79 |
+
... )
|
80 |
+
|
81 |
+
>>> img2 = load_image(
|
82 |
+
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
83 |
+
... "/kandinsky/starry_night.jpeg"
|
84 |
+
... )
|
85 |
+
|
86 |
+
>>> images_texts = ["a cat", img1, img2]
|
87 |
+
>>> weights = [0.3, 0.3, 0.4]
|
88 |
+
>>> image_emb, zero_image_emb = pipe_prior.interpolate(images_texts, weights)
|
89 |
+
|
90 |
+
>>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
|
91 |
+
>>> pipe.to("cuda")
|
92 |
+
|
93 |
+
>>> image = pipe(
|
94 |
+
... "",
|
95 |
+
... image_embeds=image_emb,
|
96 |
+
... negative_image_embeds=zero_image_emb,
|
97 |
+
... height=768,
|
98 |
+
... width=768,
|
99 |
+
... num_inference_steps=150,
|
100 |
+
... ).images[0]
|
101 |
+
|
102 |
+
>>> image.save("starry_cat.png")
|
103 |
+
```
|
104 |
+
"""
|
105 |
+
|
106 |
+
|
107 |
+
@dataclass
|
108 |
+
class KandinskyPriorPipelineOutput(BaseOutput):
|
109 |
+
"""
|
110 |
+
Output class for KandinskyPriorPipeline.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
image_embeds (`torch.FloatTensor`)
|
114 |
+
clip image embeddings for text prompt
|
115 |
+
negative_image_embeds (`List[PIL.Image.Image]` or `np.ndarray`)
|
116 |
+
clip image embeddings for unconditional tokens
|
117 |
+
"""
|
118 |
+
|
119 |
+
image_embeds: Union[torch.FloatTensor, np.ndarray]
|
120 |
+
negative_image_embeds: Union[torch.FloatTensor, np.ndarray]
|
121 |
+
|
122 |
+
|
123 |
+
class KandinskyPriorPipeline(DiffusionPipeline):
|
124 |
+
"""
|
125 |
+
Pipeline for generating image prior for Kandinsky
|
126 |
+
|
127 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
128 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
129 |
+
|
130 |
+
Args:
|
131 |
+
prior ([`PriorTransformer`]):
|
132 |
+
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
|
133 |
+
image_encoder ([`CLIPVisionModelWithProjection`]):
|
134 |
+
Frozen image-encoder.
|
135 |
+
text_encoder ([`CLIPTextModelWithProjection`]):
|
136 |
+
Frozen text-encoder.
|
137 |
+
tokenizer (`CLIPTokenizer`):
|
138 |
+
Tokenizer of class
|
139 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
140 |
+
scheduler ([`UnCLIPScheduler`]):
|
141 |
+
A scheduler to be used in combination with `prior` to generate image embedding.
|
142 |
+
"""
|
143 |
+
|
144 |
+
_exclude_from_cpu_offload = ["prior"]
|
145 |
+
|
146 |
+
def __init__(
|
147 |
+
self,
|
148 |
+
prior: PriorTransformer,
|
149 |
+
image_encoder: CLIPVisionModelWithProjection,
|
150 |
+
text_encoder: CLIPTextModelWithProjection,
|
151 |
+
tokenizer: CLIPTokenizer,
|
152 |
+
scheduler: UnCLIPScheduler,
|
153 |
+
image_processor: CLIPImageProcessor,
|
154 |
+
):
|
155 |
+
super().__init__()
|
156 |
+
|
157 |
+
self.register_modules(
|
158 |
+
prior=prior,
|
159 |
+
text_encoder=text_encoder,
|
160 |
+
tokenizer=tokenizer,
|
161 |
+
scheduler=scheduler,
|
162 |
+
image_encoder=image_encoder,
|
163 |
+
image_processor=image_processor,
|
164 |
+
)
|
165 |
+
|
166 |
+
@torch.no_grad()
|
167 |
+
@replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING)
|
168 |
+
def interpolate(
|
169 |
+
self,
|
170 |
+
images_and_prompts: List[Union[str, PIL.Image.Image, torch.FloatTensor]],
|
171 |
+
weights: List[float],
|
172 |
+
num_images_per_prompt: int = 1,
|
173 |
+
num_inference_steps: int = 25,
|
174 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
175 |
+
latents: Optional[torch.FloatTensor] = None,
|
176 |
+
negative_prior_prompt: Optional[str] = None,
|
177 |
+
negative_prompt: str = "",
|
178 |
+
guidance_scale: float = 4.0,
|
179 |
+
device=None,
|
180 |
+
):
|
181 |
+
"""
|
182 |
+
Function invoked when using the prior pipeline for interpolation.
|
183 |
+
|
184 |
+
Args:
|
185 |
+
images_and_prompts (`List[Union[str, PIL.Image.Image, torch.FloatTensor]]`):
|
186 |
+
list of prompts and images to guide the image generation.
|
187 |
+
weights: (`List[float]`):
|
188 |
+
list of weights for each condition in `images_and_prompts`
|
189 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
190 |
+
The number of images to generate per prompt.
|
191 |
+
num_inference_steps (`int`, *optional*, defaults to 25):
|
192 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
193 |
+
expense of slower inference.
|
194 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
195 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
196 |
+
to make generation deterministic.
|
197 |
+
latents (`torch.FloatTensor`, *optional*):
|
198 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
199 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
200 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
201 |
+
negative_prior_prompt (`str`, *optional*):
|
202 |
+
The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if
|
203 |
+
`guidance_scale` is less than `1`).
|
204 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
205 |
+
The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if
|
206 |
+
`guidance_scale` is less than `1`).
|
207 |
+
guidance_scale (`float`, *optional*, defaults to 4.0):
|
208 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
209 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
210 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
211 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
212 |
+
usually at the expense of lower image quality.
|
213 |
+
|
214 |
+
Examples:
|
215 |
+
|
216 |
+
Returns:
|
217 |
+
[`KandinskyPriorPipelineOutput`] or `tuple`
|
218 |
+
"""
|
219 |
+
|
220 |
+
device = device or self.device
|
221 |
+
|
222 |
+
if len(images_and_prompts) != len(weights):
|
223 |
+
raise ValueError(
|
224 |
+
f"`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length"
|
225 |
+
)
|
226 |
+
|
227 |
+
image_embeddings = []
|
228 |
+
for cond, weight in zip(images_and_prompts, weights):
|
229 |
+
if isinstance(cond, str):
|
230 |
+
image_emb = self(
|
231 |
+
cond,
|
232 |
+
num_inference_steps=num_inference_steps,
|
233 |
+
num_images_per_prompt=num_images_per_prompt,
|
234 |
+
generator=generator,
|
235 |
+
latents=latents,
|
236 |
+
negative_prompt=negative_prior_prompt,
|
237 |
+
guidance_scale=guidance_scale,
|
238 |
+
).image_embeds
|
239 |
+
|
240 |
+
elif isinstance(cond, (PIL.Image.Image, torch.Tensor)):
|
241 |
+
if isinstance(cond, PIL.Image.Image):
|
242 |
+
cond = (
|
243 |
+
self.image_processor(cond, return_tensors="pt")
|
244 |
+
.pixel_values[0]
|
245 |
+
.unsqueeze(0)
|
246 |
+
.to(dtype=self.image_encoder.dtype, device=device)
|
247 |
+
)
|
248 |
+
|
249 |
+
image_emb = self.image_encoder(cond)["image_embeds"]
|
250 |
+
|
251 |
+
else:
|
252 |
+
raise ValueError(
|
253 |
+
f"`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor` but is {type(cond)}"
|
254 |
+
)
|
255 |
+
|
256 |
+
image_embeddings.append(image_emb * weight)
|
257 |
+
|
258 |
+
image_emb = torch.cat(image_embeddings).sum(dim=0, keepdim=True)
|
259 |
+
|
260 |
+
out_zero = self(
|
261 |
+
negative_prompt,
|
262 |
+
num_inference_steps=num_inference_steps,
|
263 |
+
num_images_per_prompt=num_images_per_prompt,
|
264 |
+
generator=generator,
|
265 |
+
latents=latents,
|
266 |
+
negative_prompt=negative_prior_prompt,
|
267 |
+
guidance_scale=guidance_scale,
|
268 |
+
)
|
269 |
+
zero_image_emb = (
|
270 |
+
out_zero.negative_image_embeds
|
271 |
+
if negative_prompt == ""
|
272 |
+
else out_zero.image_embeds
|
273 |
+
)
|
274 |
+
|
275 |
+
return KandinskyPriorPipelineOutput(
|
276 |
+
image_embeds=image_emb, negative_image_embeds=zero_image_emb
|
277 |
+
)
|
278 |
+
|
279 |
+
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
|
280 |
+
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
|
281 |
+
if latents is None:
|
282 |
+
latents = randn_tensor(
|
283 |
+
shape, generator=generator, device=device, dtype=dtype
|
284 |
+
)
|
285 |
+
else:
|
286 |
+
if latents.shape != shape:
|
287 |
+
raise ValueError(
|
288 |
+
f"Unexpected latents shape, got {latents.shape}, expected {shape}"
|
289 |
+
)
|
290 |
+
latents = latents.to(device)
|
291 |
+
|
292 |
+
latents = latents * scheduler.init_noise_sigma
|
293 |
+
return latents
|
294 |
+
|
295 |
+
def get_zero_embed(self, batch_size=1, device=None):
|
296 |
+
device = device or self.device
|
297 |
+
zero_img = torch.zeros(
|
298 |
+
1,
|
299 |
+
3,
|
300 |
+
self.image_encoder.config.image_size,
|
301 |
+
self.image_encoder.config.image_size,
|
302 |
+
).to(device=device, dtype=self.image_encoder.dtype)
|
303 |
+
zero_image_emb = self.image_encoder(zero_img)["image_embeds"]
|
304 |
+
zero_image_emb = zero_image_emb.repeat(batch_size, 1)
|
305 |
+
return zero_image_emb
|
306 |
+
|
307 |
+
def _encode_prompt(
|
308 |
+
self,
|
309 |
+
prompt,
|
310 |
+
device,
|
311 |
+
num_images_per_prompt,
|
312 |
+
do_classifier_free_guidance,
|
313 |
+
negative_prompt=None,
|
314 |
+
):
|
315 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
316 |
+
# get prompt text embeddings
|
317 |
+
text_inputs = self.tokenizer(
|
318 |
+
prompt,
|
319 |
+
padding="max_length",
|
320 |
+
max_length=self.tokenizer.model_max_length,
|
321 |
+
truncation=True,
|
322 |
+
return_tensors="pt",
|
323 |
+
)
|
324 |
+
text_input_ids = text_inputs.input_ids
|
325 |
+
text_mask = text_inputs.attention_mask.bool().to(device)
|
326 |
+
|
327 |
+
untruncated_ids = self.tokenizer(
|
328 |
+
prompt, padding="longest", return_tensors="pt"
|
329 |
+
).input_ids
|
330 |
+
|
331 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
332 |
+
text_input_ids, untruncated_ids
|
333 |
+
):
|
334 |
+
removed_text = self.tokenizer.batch_decode(
|
335 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
336 |
+
)
|
337 |
+
logger.warning(
|
338 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
339 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
340 |
+
)
|
341 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
342 |
+
|
343 |
+
text_encoder_output = self.text_encoder(text_input_ids.to(device))
|
344 |
+
|
345 |
+
prompt_embeds = text_encoder_output.text_embeds
|
346 |
+
text_encoder_hidden_states = text_encoder_output.last_hidden_state
|
347 |
+
|
348 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
349 |
+
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(
|
350 |
+
num_images_per_prompt, dim=0
|
351 |
+
)
|
352 |
+
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
|
353 |
+
|
354 |
+
if do_classifier_free_guidance:
|
355 |
+
uncond_tokens: List[str]
|
356 |
+
if negative_prompt is None:
|
357 |
+
uncond_tokens = [""] * batch_size
|
358 |
+
elif type(prompt) is not type(negative_prompt):
|
359 |
+
raise TypeError(
|
360 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
361 |
+
f" {type(prompt)}."
|
362 |
+
)
|
363 |
+
elif isinstance(negative_prompt, str):
|
364 |
+
uncond_tokens = [negative_prompt]
|
365 |
+
elif batch_size != len(negative_prompt):
|
366 |
+
raise ValueError(
|
367 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
368 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
369 |
+
" the batch size of `prompt`."
|
370 |
+
)
|
371 |
+
else:
|
372 |
+
uncond_tokens = negative_prompt
|
373 |
+
|
374 |
+
uncond_input = self.tokenizer(
|
375 |
+
uncond_tokens,
|
376 |
+
padding="max_length",
|
377 |
+
max_length=self.tokenizer.model_max_length,
|
378 |
+
truncation=True,
|
379 |
+
return_tensors="pt",
|
380 |
+
)
|
381 |
+
uncond_text_mask = uncond_input.attention_mask.bool().to(device)
|
382 |
+
negative_prompt_embeds_text_encoder_output = self.text_encoder(
|
383 |
+
uncond_input.input_ids.to(device)
|
384 |
+
)
|
385 |
+
|
386 |
+
negative_prompt_embeds = (
|
387 |
+
negative_prompt_embeds_text_encoder_output.text_embeds
|
388 |
+
)
|
389 |
+
uncond_text_encoder_hidden_states = (
|
390 |
+
negative_prompt_embeds_text_encoder_output.last_hidden_state
|
391 |
+
)
|
392 |
+
|
393 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
394 |
+
|
395 |
+
seq_len = negative_prompt_embeds.shape[1]
|
396 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(
|
397 |
+
1, num_images_per_prompt
|
398 |
+
)
|
399 |
+
negative_prompt_embeds = negative_prompt_embeds.view(
|
400 |
+
batch_size * num_images_per_prompt, seq_len
|
401 |
+
)
|
402 |
+
|
403 |
+
seq_len = uncond_text_encoder_hidden_states.shape[1]
|
404 |
+
uncond_text_encoder_hidden_states = (
|
405 |
+
uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
|
406 |
+
)
|
407 |
+
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
|
408 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
409 |
+
)
|
410 |
+
uncond_text_mask = uncond_text_mask.repeat_interleave(
|
411 |
+
num_images_per_prompt, dim=0
|
412 |
+
)
|
413 |
+
|
414 |
+
# done duplicates
|
415 |
+
|
416 |
+
# For classifier free guidance, we need to do two forward passes.
|
417 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
418 |
+
# to avoid doing two forward passes
|
419 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
420 |
+
text_encoder_hidden_states = torch.cat(
|
421 |
+
[uncond_text_encoder_hidden_states, text_encoder_hidden_states]
|
422 |
+
)
|
423 |
+
|
424 |
+
text_mask = torch.cat([uncond_text_mask, text_mask])
|
425 |
+
|
426 |
+
return prompt_embeds, text_encoder_hidden_states, text_mask
|
427 |
+
|
428 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
429 |
+
r"""
|
430 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
431 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
432 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
433 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
434 |
+
"""
|
435 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
436 |
+
from accelerate import cpu_offload_with_hook
|
437 |
+
else:
|
438 |
+
raise ImportError(
|
439 |
+
"`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher."
|
440 |
+
)
|
441 |
+
|
442 |
+
device = torch.device(f"cuda:{gpu_id}")
|
443 |
+
|
444 |
+
if self.device.type != "cpu":
|
445 |
+
self.to("cpu", silence_dtype_warnings=True)
|
446 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
447 |
+
|
448 |
+
hook = None
|
449 |
+
for cpu_offloaded_model in [self.text_encoder, self.prior]:
|
450 |
+
_, hook = cpu_offload_with_hook(
|
451 |
+
cpu_offloaded_model, device, prev_module_hook=hook
|
452 |
+
)
|
453 |
+
|
454 |
+
# We'll offload the last model manually.
|
455 |
+
self.prior_hook = hook
|
456 |
+
|
457 |
+
_, hook = cpu_offload_with_hook(
|
458 |
+
self.image_encoder, device, prev_module_hook=self.prior_hook
|
459 |
+
)
|
460 |
+
|
461 |
+
self.final_offload_hook = hook
|
462 |
+
|
463 |
+
@torch.no_grad()
|
464 |
+
def get_text_feats(self, raw_data):
|
465 |
+
prompt = raw_data["prompt"]
|
466 |
+
txt = self.tokenizer(
|
467 |
+
prompt,
|
468 |
+
padding="max_length",
|
469 |
+
truncation=True,
|
470 |
+
return_tensors="pt",
|
471 |
+
)
|
472 |
+
txt_items = {k: v.to("cuda") for k, v in txt.items()}
|
473 |
+
txt_feats = self.text_encoder(**txt_items)
|
474 |
+
last_hidden_states = txt_feats.last_hidden_state[0].detach().cpu().numpy()
|
475 |
+
prompt_embeds = txt_feats.text_embeds.detach().cpu()
|
476 |
+
attention_mask = txt_items["attention_mask"]
|
477 |
+
|
478 |
+
for sub_img, sub_name in zip(raw_data["subject_images"], raw_data["subject_keywords"]):
|
479 |
+
if isinstance(sub_img, str):
|
480 |
+
sub_img = Image.open(sub_img)
|
481 |
+
mask_img = self.image_processor(sub_img, return_tensors="pt").to("cuda")
|
482 |
+
vision_feats = self.image_encoder(**mask_img).image_embeds
|
483 |
+
entity_tokens = self.tokenizer(sub_name)["input_ids"][1:-1]
|
484 |
+
|
485 |
+
found = True
|
486 |
+
for tid in entity_tokens:
|
487 |
+
indices = np.where(txt_items["input_ids"][0].cpu().numpy() == tid)[0]
|
488 |
+
if len(indices)==0:
|
489 |
+
found = False
|
490 |
+
last_hidden_states[indices] = vision_feats[0].cpu().numpy()
|
491 |
+
|
492 |
+
if not found:
|
493 |
+
print(f"Couldn't find keyword '{sub_name}' in the prompt.")
|
494 |
+
|
495 |
+
text_feats = {
|
496 |
+
"prompt_embeds": prompt_embeds,
|
497 |
+
"text_encoder_hidden_states": torch.tensor(last_hidden_states).unsqueeze(0),
|
498 |
+
"text_mask": attention_mask,
|
499 |
+
}
|
500 |
+
|
501 |
+
return text_feats
|
502 |
+
|
503 |
+
@torch.no_grad()
|
504 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
505 |
+
def __call__(
|
506 |
+
self,
|
507 |
+
text_feats: dict = None,
|
508 |
+
raw_data: dict = None,
|
509 |
+
num_images_per_prompt: int = 1,
|
510 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
511 |
+
latents: Optional[torch.FloatTensor] = None,
|
512 |
+
output_type: Optional[str] = "pt",
|
513 |
+
return_dict: bool = True,
|
514 |
+
control_embedding: torch.FloatTensor = None,
|
515 |
+
):
|
516 |
+
"""
|
517 |
+
Function invoked when calling the pipeline for generation.
|
518 |
+
|
519 |
+
Args:
|
520 |
+
text_feats (`dict`, *optional*, defaults to None):
|
521 |
+
"prompt_embeds", "text_encoder_hidden_states", "text_mask"
|
522 |
+
raw_data (`dict`, *optional*, defaults to None):
|
523 |
+
"prompt": str,
|
524 |
+
"subject_images": List of str or PIL
|
525 |
+
"subject_keywords": List of str
|
526 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
527 |
+
The number of images to generate per prompt.
|
528 |
+
num_inference_steps (`int`, *optional*, defaults to 25):
|
529 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
530 |
+
expense of slower inference.
|
531 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
532 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
533 |
+
to make generation deterministic.
|
534 |
+
latents (`torch.FloatTensor`, *optional*):
|
535 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
536 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
537 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
538 |
+
output_type (`str`, *optional*, defaults to `"pt"`):
|
539 |
+
The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"`
|
540 |
+
(`torch.Tensor`).
|
541 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
542 |
+
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
|
543 |
+
|
544 |
+
Examples:
|
545 |
+
|
546 |
+
Returns:
|
547 |
+
[`KandinskyPriorPipelineOutput`] or `tuple`
|
548 |
+
"""
|
549 |
+
assert text_feats or raw_data, "please provide wither raw_data or pre-processed text-feats"
|
550 |
+
assert num_images_per_prompt==1
|
551 |
+
|
552 |
+
if text_feats is None:
|
553 |
+
text_feats = self.get_text_feats(raw_data)
|
554 |
+
|
555 |
+
device = self._execution_device
|
556 |
+
for k,v in text_feats.items():
|
557 |
+
text_feats[k] = v.to(device)
|
558 |
+
|
559 |
+
if control_embedding is None:
|
560 |
+
control_embedding = self.get_zero_embed(1, device=device)
|
561 |
+
|
562 |
+
batch_size = text_feats["prompt_embeds"].shape[0]
|
563 |
+
assert batch_size == 1
|
564 |
+
|
565 |
+
batch_size = batch_size * num_images_per_prompt
|
566 |
+
|
567 |
+
prompt_embeds = text_feats["prompt_embeds"]
|
568 |
+
text_encoder_hidden_states = text_feats["text_encoder_hidden_states"]
|
569 |
+
text_mask = text_feats["text_mask"]
|
570 |
+
|
571 |
+
hidden_states = randn_tensor(
|
572 |
+
(batch_size, prompt_embeds.shape[-1]),
|
573 |
+
device=prompt_embeds.device,
|
574 |
+
dtype=prompt_embeds.dtype,
|
575 |
+
generator=generator,
|
576 |
+
)
|
577 |
+
|
578 |
+
latents = self.prior(
|
579 |
+
hidden_states,
|
580 |
+
proj_embedding=prompt_embeds,
|
581 |
+
encoder_hidden_states=text_encoder_hidden_states,
|
582 |
+
attention_mask=text_mask,
|
583 |
+
control_embedding=control_embedding,
|
584 |
+
).predicted_image_embedding
|
585 |
+
|
586 |
+
image_embeddings = latents
|
587 |
+
|
588 |
+
# if negative prompt has been defined, we retrieve split the image embedding into two
|
589 |
+
negative_prompt = None
|
590 |
+
if negative_prompt is None:
|
591 |
+
zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device)
|
592 |
+
|
593 |
+
if (
|
594 |
+
hasattr(self, "final_offload_hook")
|
595 |
+
and self.final_offload_hook is not None
|
596 |
+
):
|
597 |
+
self.final_offload_hook.offload()
|
598 |
+
else:
|
599 |
+
image_embeddings, zero_embeds = image_embeddings.chunk(2)
|
600 |
+
|
601 |
+
if (
|
602 |
+
hasattr(self, "final_offload_hook")
|
603 |
+
and self.final_offload_hook is not None
|
604 |
+
):
|
605 |
+
self.prior_hook.offload()
|
606 |
+
|
607 |
+
if output_type not in ["pt", "np"]:
|
608 |
+
raise ValueError(
|
609 |
+
f"Only the output types `pt` and `np` are supported not output_type={output_type}"
|
610 |
+
)
|
611 |
+
|
612 |
+
if output_type == "np":
|
613 |
+
image_embeddings = image_embeddings.cpu().numpy()
|
614 |
+
zero_embeds = zero_embeds.cpu().numpy()
|
615 |
+
|
616 |
+
if not return_dict:
|
617 |
+
return (image_embeddings, zero_embeds)
|
618 |
+
|
619 |
+
return KandinskyPriorPipelineOutput(
|
620 |
+
image_embeds=image_embeddings, negative_image_embeds=zero_embeds
|
621 |
+
)
|
src/priors/__init__.py
ADDED
File without changes
|
src/priors/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (190 Bytes). View file
|
|
src/priors/__pycache__/lambda_prior_transformer.cpython-39.pyc
ADDED
Binary file (12.1 kB). View file
|
|
src/priors/lambda_prior_transformer.py
ADDED
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Dict, Optional, Union
|
3 |
+
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
10 |
+
from diffusers.utils import BaseOutput
|
11 |
+
from diffusers.models.attention import BasicTransformerBlock
|
12 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
13 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
14 |
+
from diffusers.models.modeling_utils import ModelMixin
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class PriorTransformerOutput(BaseOutput):
|
19 |
+
"""
|
20 |
+
The output of [`PriorTransformer`].
|
21 |
+
|
22 |
+
Args:
|
23 |
+
predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
|
24 |
+
The predicted CLIP image embedding conditioned on the CLIP text embedding input.
|
25 |
+
"""
|
26 |
+
|
27 |
+
predicted_image_embedding: torch.FloatTensor
|
28 |
+
|
29 |
+
|
30 |
+
class PriorTransformer(ModelMixin, ConfigMixin):
|
31 |
+
"""
|
32 |
+
A Prior Transformer model.
|
33 |
+
|
34 |
+
Parameters:
|
35 |
+
num_attention_heads (`int`, *optional*, defaults to 32): The number of heads to use for multi-head attention.
|
36 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
37 |
+
num_layers (`int`, *optional*, defaults to 20): The number of layers of Transformer blocks to use.
|
38 |
+
embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `hidden_states`
|
39 |
+
num_embeddings (`int`, *optional*, defaults to 77):
|
40 |
+
The number of embeddings of the model input `hidden_states`
|
41 |
+
additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the
|
42 |
+
projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings +
|
43 |
+
additional_embeddings`.
|
44 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
45 |
+
time_embed_act_fn (`str`, *optional*, defaults to 'silu'):
|
46 |
+
The activation function to use to create timestep embeddings.
|
47 |
+
norm_in_type (`str`, *optional*, defaults to None): The normalization layer to apply on hidden states before
|
48 |
+
passing to Transformer blocks. Set it to `None` if normalization is not needed.
|
49 |
+
embedding_proj_norm_type (`str`, *optional*, defaults to None):
|
50 |
+
The normalization layer to apply on the input `proj_embedding`. Set it to `None` if normalization is not
|
51 |
+
needed.
|
52 |
+
encoder_hid_proj_type (`str`, *optional*, defaults to `linear`):
|
53 |
+
The projection layer to apply on the input `encoder_hidden_states`. Set it to `None` if
|
54 |
+
`encoder_hidden_states` is `None`.
|
55 |
+
added_emb_type (`str`, *optional*, defaults to `prd`): Additional embeddings to condition the model.
|
56 |
+
Choose from `prd` or `None`. if choose `prd`, it will prepend a token indicating the (quantized) dot
|
57 |
+
product between the text embedding and image embedding as proposed in the unclip paper
|
58 |
+
https://arxiv.org/abs/2204.06125 If it is `None`, no additional embeddings will be prepended.
|
59 |
+
time_embed_dim (`int, *optional*, defaults to None): The dimension of timestep embeddings.
|
60 |
+
If None, will be set to `num_attention_heads * attention_head_dim`
|
61 |
+
embedding_proj_dim (`int`, *optional*, default to None):
|
62 |
+
The dimension of `proj_embedding`. If None, will be set to `embedding_dim`.
|
63 |
+
clip_embed_dim (`int`, *optional*, default to None):
|
64 |
+
The dimension of the output. If None, will be set to `embedding_dim`.
|
65 |
+
"""
|
66 |
+
|
67 |
+
@register_to_config
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
num_attention_heads: int = 32,
|
71 |
+
attention_head_dim: int = 64,
|
72 |
+
num_layers: int = 20,
|
73 |
+
embedding_dim: int = 768,
|
74 |
+
num_embeddings=77,
|
75 |
+
additional_embeddings=3, # as we have remvoed the time embedding
|
76 |
+
dropout: float = 0.0,
|
77 |
+
# time_embed_act_fn: str = "silu",
|
78 |
+
norm_in_type: Optional[str] = None, # layer
|
79 |
+
embedding_proj_norm_type: Optional[str] = None, # layer
|
80 |
+
encoder_hid_proj_type: Optional[str] = "linear", # linear
|
81 |
+
added_emb_type: Optional[str] = "prd", # prd
|
82 |
+
# time_embed_dim: Optional[int] = None,
|
83 |
+
embedding_proj_dim: Optional[int] = None,
|
84 |
+
clip_embed_dim: Optional[int] = None,
|
85 |
+
):
|
86 |
+
super().__init__()
|
87 |
+
self.num_attention_heads = num_attention_heads
|
88 |
+
self.attention_head_dim = attention_head_dim
|
89 |
+
inner_dim = num_attention_heads * attention_head_dim
|
90 |
+
self.additional_embeddings = additional_embeddings
|
91 |
+
|
92 |
+
# time_embed_dim = time_embed_dim or inner_dim
|
93 |
+
embedding_proj_dim = embedding_proj_dim or embedding_dim
|
94 |
+
clip_embed_dim = clip_embed_dim or embedding_dim
|
95 |
+
|
96 |
+
# self.time_proj = Timesteps(inner_dim, True, 0)
|
97 |
+
# self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, out_dim=inner_dim, act_fn=time_embed_act_fn)
|
98 |
+
|
99 |
+
self.proj_in = nn.Linear(embedding_dim, inner_dim)
|
100 |
+
|
101 |
+
if embedding_proj_norm_type is None:
|
102 |
+
self.embedding_proj_norm = None
|
103 |
+
elif embedding_proj_norm_type == "layer":
|
104 |
+
self.embedding_proj_norm = nn.LayerNorm(embedding_proj_dim)
|
105 |
+
else:
|
106 |
+
raise ValueError(f"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}")
|
107 |
+
|
108 |
+
self.embedding_proj = nn.Linear(embedding_proj_dim, inner_dim)
|
109 |
+
self.embedding_control = nn.Linear(embedding_proj_dim, inner_dim)
|
110 |
+
|
111 |
+
if encoder_hid_proj_type is None:
|
112 |
+
self.encoder_hidden_states_proj = None
|
113 |
+
elif encoder_hid_proj_type == "linear":
|
114 |
+
self.encoder_hidden_states_proj = nn.Linear(embedding_dim, inner_dim)
|
115 |
+
else:
|
116 |
+
raise ValueError(f"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}")
|
117 |
+
|
118 |
+
self.positional_embedding = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, inner_dim))
|
119 |
+
|
120 |
+
if added_emb_type == "prd":
|
121 |
+
self.prd_embedding = nn.Parameter(torch.zeros(1, 1, inner_dim))
|
122 |
+
elif added_emb_type is None:
|
123 |
+
self.prd_embedding = None
|
124 |
+
else:
|
125 |
+
raise ValueError(
|
126 |
+
f"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`."
|
127 |
+
)
|
128 |
+
|
129 |
+
self.transformer_blocks = nn.ModuleList(
|
130 |
+
[
|
131 |
+
BasicTransformerBlock(
|
132 |
+
inner_dim,
|
133 |
+
num_attention_heads,
|
134 |
+
attention_head_dim,
|
135 |
+
dropout=dropout,
|
136 |
+
activation_fn="gelu",
|
137 |
+
attention_bias=True,
|
138 |
+
)
|
139 |
+
for d in range(num_layers)
|
140 |
+
]
|
141 |
+
)
|
142 |
+
|
143 |
+
if norm_in_type == "layer":
|
144 |
+
self.norm_in = nn.LayerNorm(inner_dim)
|
145 |
+
elif norm_in_type is None:
|
146 |
+
self.norm_in = None
|
147 |
+
else:
|
148 |
+
raise ValueError(f"Unsupported norm_in_type: {norm_in_type}.")
|
149 |
+
|
150 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
151 |
+
|
152 |
+
self.proj_to_clip_embeddings = nn.Linear(inner_dim, clip_embed_dim)
|
153 |
+
|
154 |
+
causal_attention_mask = torch.full(
|
155 |
+
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -10000.0
|
156 |
+
)
|
157 |
+
causal_attention_mask.triu_(1)
|
158 |
+
causal_attention_mask = causal_attention_mask[None, ...]
|
159 |
+
self.register_buffer("causal_attention_mask", causal_attention_mask, persistent=False)
|
160 |
+
|
161 |
+
self.clip_mean = nn.Parameter(torch.zeros(1, clip_embed_dim))
|
162 |
+
self.clip_std = nn.Parameter(torch.zeros(1, clip_embed_dim))
|
163 |
+
|
164 |
+
@property
|
165 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
166 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
167 |
+
r"""
|
168 |
+
Returns:
|
169 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
170 |
+
indexed by its weight name.
|
171 |
+
"""
|
172 |
+
# set recursively
|
173 |
+
processors = {}
|
174 |
+
|
175 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
176 |
+
if hasattr(module, "set_processor"):
|
177 |
+
processors[f"{name}.processor"] = module.processor
|
178 |
+
|
179 |
+
for sub_name, child in module.named_children():
|
180 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
181 |
+
|
182 |
+
return processors
|
183 |
+
|
184 |
+
for name, module in self.named_children():
|
185 |
+
fn_recursive_add_processors(name, module, processors)
|
186 |
+
|
187 |
+
return processors
|
188 |
+
|
189 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
190 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
191 |
+
r"""
|
192 |
+
Sets the attention processor to use to compute attention.
|
193 |
+
|
194 |
+
Parameters:
|
195 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
196 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
197 |
+
for **all** `Attention` layers.
|
198 |
+
|
199 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
200 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
201 |
+
|
202 |
+
"""
|
203 |
+
count = len(self.attn_processors.keys())
|
204 |
+
|
205 |
+
if isinstance(processor, dict) and len(processor) != count:
|
206 |
+
raise ValueError(
|
207 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
208 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
209 |
+
)
|
210 |
+
|
211 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
212 |
+
if hasattr(module, "set_processor"):
|
213 |
+
if not isinstance(processor, dict):
|
214 |
+
module.set_processor(processor)
|
215 |
+
else:
|
216 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
217 |
+
|
218 |
+
for sub_name, child in module.named_children():
|
219 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
220 |
+
|
221 |
+
for name, module in self.named_children():
|
222 |
+
fn_recursive_attn_processor(name, module, processor)
|
223 |
+
|
224 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
225 |
+
def set_default_attn_processor(self):
|
226 |
+
"""
|
227 |
+
Disables custom attention processors and sets the default attention implementation.
|
228 |
+
"""
|
229 |
+
self.set_attn_processor(AttnProcessor())
|
230 |
+
|
231 |
+
def forward(
|
232 |
+
self,
|
233 |
+
hidden_states,
|
234 |
+
# timestep: Union[torch.Tensor, float, int],
|
235 |
+
proj_embedding: torch.FloatTensor,
|
236 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
237 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
238 |
+
control_embedding: torch.FloatTensor = None,
|
239 |
+
return_dict: bool = True,
|
240 |
+
):
|
241 |
+
"""
|
242 |
+
The [`PriorTransformer`] forward method.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
hidden_states (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
|
246 |
+
The currently predicted image embeddings.
|
247 |
+
timestep (`torch.LongTensor`):
|
248 |
+
Current denoising step.
|
249 |
+
proj_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
|
250 |
+
Projected embedding vector the denoising process is conditioned on.
|
251 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_embeddings, embedding_dim)`):
|
252 |
+
Hidden states of the text embeddings the denoising process is conditioned on.
|
253 |
+
attention_mask (`torch.BoolTensor` of shape `(batch_size, num_embeddings)`):
|
254 |
+
Text mask for the text embeddings.
|
255 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
256 |
+
Whether or not to return a [`~models.prior_transformer.PriorTransformerOutput`] instead of a plain
|
257 |
+
tuple.
|
258 |
+
|
259 |
+
Returns:
|
260 |
+
[`~models.prior_transformer.PriorTransformerOutput`] or `tuple`:
|
261 |
+
If return_dict is True, a [`~models.prior_transformer.PriorTransformerOutput`] is returned, otherwise a
|
262 |
+
tuple is returned where the first element is the sample tensor.
|
263 |
+
"""
|
264 |
+
batch_size = hidden_states.shape[0]
|
265 |
+
|
266 |
+
# timesteps = timestep
|
267 |
+
# if not torch.is_tensor(timesteps):
|
268 |
+
# timesteps = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device)
|
269 |
+
# elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
270 |
+
# timesteps = timesteps[None].to(hidden_states.device)
|
271 |
+
|
272 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
273 |
+
# timesteps = timesteps * torch.ones(batch_size, dtype=timesteps.dtype, device=timesteps.device)
|
274 |
+
|
275 |
+
# timesteps_projected = self.time_proj(timesteps)
|
276 |
+
|
277 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
278 |
+
# but time_embedding might be fp16, so we need to cast here.
|
279 |
+
# timesteps_projected = timesteps_projected.to(dtype=self.dtype)
|
280 |
+
# time_embeddings = self.time_embedding(timesteps_projected)
|
281 |
+
|
282 |
+
if self.embedding_proj_norm is not None:
|
283 |
+
proj_embedding = self.embedding_proj_norm(proj_embedding)
|
284 |
+
|
285 |
+
proj_embeddings = self.embedding_proj(proj_embedding)
|
286 |
+
control_embeddings = self.embedding_control(control_embedding)
|
287 |
+
|
288 |
+
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
|
289 |
+
encoder_hidden_states = self.encoder_hidden_states_proj(encoder_hidden_states)
|
290 |
+
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
|
291 |
+
raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set")
|
292 |
+
|
293 |
+
hidden_states = self.proj_in(hidden_states)
|
294 |
+
|
295 |
+
positional_embeddings = self.positional_embedding.to(hidden_states.dtype)
|
296 |
+
|
297 |
+
additional_embeds = []
|
298 |
+
additional_embeddings_len = 0
|
299 |
+
|
300 |
+
if encoder_hidden_states is not None:
|
301 |
+
additional_embeds.append(encoder_hidden_states)
|
302 |
+
additional_embeddings_len += encoder_hidden_states.shape[1]
|
303 |
+
|
304 |
+
if len(proj_embeddings.shape) == 2:
|
305 |
+
proj_embeddings = proj_embeddings[:, None, :]
|
306 |
+
|
307 |
+
if len(control_embeddings.shape) == 2:
|
308 |
+
control_embeddings = control_embeddings[:, None, :]
|
309 |
+
|
310 |
+
if len(hidden_states.shape) == 2:
|
311 |
+
hidden_states = hidden_states[:, None, :]
|
312 |
+
|
313 |
+
additional_embeds = additional_embeds + [
|
314 |
+
control_embeddings,
|
315 |
+
proj_embeddings,
|
316 |
+
# time_embeddings[:, None, :],
|
317 |
+
hidden_states,
|
318 |
+
]
|
319 |
+
|
320 |
+
if self.prd_embedding is not None:
|
321 |
+
prd_embedding = self.prd_embedding.to(hidden_states.dtype).expand(batch_size, -1, -1)
|
322 |
+
additional_embeds.append(prd_embedding)
|
323 |
+
|
324 |
+
hidden_states = torch.cat(
|
325 |
+
additional_embeds,
|
326 |
+
dim=1,
|
327 |
+
)
|
328 |
+
|
329 |
+
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
|
330 |
+
additional_embeddings_len = additional_embeddings_len + proj_embeddings.shape[1] + 1
|
331 |
+
if positional_embeddings.shape[1] < hidden_states.shape[1]:
|
332 |
+
positional_embeddings = F.pad(
|
333 |
+
positional_embeddings,
|
334 |
+
(
|
335 |
+
0,
|
336 |
+
0,
|
337 |
+
additional_embeddings_len,
|
338 |
+
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
|
339 |
+
),
|
340 |
+
value=0.0,
|
341 |
+
)
|
342 |
+
|
343 |
+
hidden_states = hidden_states + positional_embeddings
|
344 |
+
|
345 |
+
if attention_mask is not None:
|
346 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
347 |
+
attention_mask = F.pad(attention_mask, (0, self.additional_embeddings), value=0.0)
|
348 |
+
attention_mask = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype)
|
349 |
+
attention_mask = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0)
|
350 |
+
|
351 |
+
if self.norm_in is not None:
|
352 |
+
hidden_states = self.norm_in(hidden_states)
|
353 |
+
|
354 |
+
for block in self.transformer_blocks:
|
355 |
+
hidden_states = block(hidden_states, attention_mask=attention_mask)
|
356 |
+
|
357 |
+
hidden_states = self.norm_out(hidden_states)
|
358 |
+
|
359 |
+
if self.prd_embedding is not None:
|
360 |
+
hidden_states = hidden_states[:, -1]
|
361 |
+
else:
|
362 |
+
hidden_states = hidden_states[:, additional_embeddings_len:]
|
363 |
+
|
364 |
+
predicted_image_embedding = self.proj_to_clip_embeddings(hidden_states)
|
365 |
+
|
366 |
+
if not return_dict:
|
367 |
+
return (predicted_image_embedding,)
|
368 |
+
|
369 |
+
return PriorTransformerOutput(predicted_image_embedding=predicted_image_embedding)
|
370 |
+
|
371 |
+
def post_process_latents(self, prior_latents):
|
372 |
+
prior_latents = (prior_latents * self.clip_std) + self.clip_mean
|
373 |
+
return prior_latents
|
src/priors/prior_transformer.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append("..")
|
3 |
+
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Dict, Optional, Union
|
6 |
+
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
13 |
+
from diffusers.utils import BaseOutput
|
14 |
+
from diffusers.models.attention import BasicTransformerBlock
|
15 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
16 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
17 |
+
from diffusers.models.modeling_utils import ModelMixin
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class PriorTransformerOutput(BaseOutput):
|
22 |
+
"""
|
23 |
+
The output of [`PriorTransformer`].
|
24 |
+
|
25 |
+
Args:
|
26 |
+
predicted_image_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
|
27 |
+
The predicted CLIP image embedding conditioned on the CLIP text embedding input.
|
28 |
+
"""
|
29 |
+
|
30 |
+
predicted_image_embedding: torch.FloatTensor
|
31 |
+
|
32 |
+
|
33 |
+
class PriorTransformer(ModelMixin, ConfigMixin):
|
34 |
+
"""
|
35 |
+
A Prior Transformer model.
|
36 |
+
|
37 |
+
Parameters:
|
38 |
+
num_attention_heads (`int`, *optional*, defaults to 32): The number of heads to use for multi-head attention.
|
39 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
40 |
+
num_layers (`int`, *optional*, defaults to 20): The number of layers of Transformer blocks to use.
|
41 |
+
embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `hidden_states`
|
42 |
+
num_embeddings (`int`, *optional*, defaults to 77):
|
43 |
+
The number of embeddings of the model input `hidden_states`
|
44 |
+
additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the
|
45 |
+
projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings +
|
46 |
+
additional_embeddings`.
|
47 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
48 |
+
time_embed_act_fn (`str`, *optional*, defaults to 'silu'):
|
49 |
+
The activation function to use to create timestep embeddings.
|
50 |
+
norm_in_type (`str`, *optional*, defaults to None): The normalization layer to apply on hidden states before
|
51 |
+
passing to Transformer blocks. Set it to `None` if normalization is not needed.
|
52 |
+
embedding_proj_norm_type (`str`, *optional*, defaults to None):
|
53 |
+
The normalization layer to apply on the input `proj_embedding`. Set it to `None` if normalization is not
|
54 |
+
needed.
|
55 |
+
encoder_hid_proj_type (`str`, *optional*, defaults to `linear`):
|
56 |
+
The projection layer to apply on the input `encoder_hidden_states`. Set it to `None` if
|
57 |
+
`encoder_hidden_states` is `None`.
|
58 |
+
added_emb_type (`str`, *optional*, defaults to `prd`): Additional embeddings to condition the model.
|
59 |
+
Choose from `prd` or `None`. if choose `prd`, it will prepend a token indicating the (quantized) dot
|
60 |
+
product between the text embedding and image embedding as proposed in the unclip paper
|
61 |
+
https://arxiv.org/abs/2204.06125 If it is `None`, no additional embeddings will be prepended.
|
62 |
+
time_embed_dim (`int, *optional*, defaults to None): The dimension of timestep embeddings.
|
63 |
+
If None, will be set to `num_attention_heads * attention_head_dim`
|
64 |
+
embedding_proj_dim (`int`, *optional*, default to None):
|
65 |
+
The dimension of `proj_embedding`. If None, will be set to `embedding_dim`.
|
66 |
+
clip_embed_dim (`int`, *optional*, default to None):
|
67 |
+
The dimension of the output. If None, will be set to `embedding_dim`.
|
68 |
+
"""
|
69 |
+
|
70 |
+
@register_to_config
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
num_attention_heads: int = 32,
|
74 |
+
attention_head_dim: int = 64,
|
75 |
+
num_layers: int = 20,
|
76 |
+
embedding_dim: int = 768,
|
77 |
+
num_embeddings=77,
|
78 |
+
additional_embeddings=3, # as we have remvoed the time embedding
|
79 |
+
dropout: float = 0.0,
|
80 |
+
# time_embed_act_fn: str = "silu",
|
81 |
+
norm_in_type: Optional[str] = None, # layer
|
82 |
+
embedding_proj_norm_type: Optional[str] = None, # layer
|
83 |
+
encoder_hid_proj_type: Optional[str] = "linear", # linear
|
84 |
+
added_emb_type: Optional[str] = "prd", # prd
|
85 |
+
# time_embed_dim: Optional[int] = None,
|
86 |
+
embedding_proj_dim: Optional[int] = None,
|
87 |
+
clip_embed_dim: Optional[int] = None,
|
88 |
+
):
|
89 |
+
super().__init__()
|
90 |
+
self.num_attention_heads = num_attention_heads
|
91 |
+
self.attention_head_dim = attention_head_dim
|
92 |
+
inner_dim = num_attention_heads * attention_head_dim
|
93 |
+
self.additional_embeddings = additional_embeddings
|
94 |
+
|
95 |
+
# time_embed_dim = time_embed_dim or inner_dim
|
96 |
+
embedding_proj_dim = embedding_proj_dim or embedding_dim
|
97 |
+
clip_embed_dim = clip_embed_dim or embedding_dim
|
98 |
+
|
99 |
+
# self.time_proj = Timesteps(inner_dim, True, 0)
|
100 |
+
# self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, out_dim=inner_dim, act_fn=time_embed_act_fn)
|
101 |
+
|
102 |
+
self.proj_in = nn.Linear(embedding_dim, inner_dim)
|
103 |
+
|
104 |
+
if embedding_proj_norm_type is None:
|
105 |
+
self.embedding_proj_norm = None
|
106 |
+
elif embedding_proj_norm_type == "layer":
|
107 |
+
self.embedding_proj_norm = nn.LayerNorm(embedding_proj_dim)
|
108 |
+
else:
|
109 |
+
raise ValueError(f"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}")
|
110 |
+
|
111 |
+
self.embedding_proj = nn.Linear(embedding_proj_dim, inner_dim)
|
112 |
+
|
113 |
+
if encoder_hid_proj_type is None:
|
114 |
+
self.encoder_hidden_states_proj = None
|
115 |
+
elif encoder_hid_proj_type == "linear":
|
116 |
+
self.encoder_hidden_states_proj = nn.Linear(embedding_dim, inner_dim)
|
117 |
+
else:
|
118 |
+
raise ValueError(f"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}")
|
119 |
+
|
120 |
+
self.positional_embedding = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, inner_dim))
|
121 |
+
|
122 |
+
if added_emb_type == "prd":
|
123 |
+
self.prd_embedding = nn.Parameter(torch.zeros(1, 1, inner_dim))
|
124 |
+
elif added_emb_type is None:
|
125 |
+
self.prd_embedding = None
|
126 |
+
else:
|
127 |
+
raise ValueError(
|
128 |
+
f"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`."
|
129 |
+
)
|
130 |
+
|
131 |
+
self.transformer_blocks = nn.ModuleList(
|
132 |
+
[
|
133 |
+
BasicTransformerBlock(
|
134 |
+
inner_dim,
|
135 |
+
num_attention_heads,
|
136 |
+
attention_head_dim,
|
137 |
+
dropout=dropout,
|
138 |
+
activation_fn="gelu",
|
139 |
+
attention_bias=True,
|
140 |
+
)
|
141 |
+
for d in range(num_layers)
|
142 |
+
]
|
143 |
+
)
|
144 |
+
|
145 |
+
if norm_in_type == "layer":
|
146 |
+
self.norm_in = nn.LayerNorm(inner_dim)
|
147 |
+
elif norm_in_type is None:
|
148 |
+
self.norm_in = None
|
149 |
+
else:
|
150 |
+
raise ValueError(f"Unsupported norm_in_type: {norm_in_type}.")
|
151 |
+
|
152 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
153 |
+
|
154 |
+
self.proj_to_clip_embeddings = nn.Linear(inner_dim, clip_embed_dim)
|
155 |
+
|
156 |
+
causal_attention_mask = torch.full(
|
157 |
+
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -10000.0
|
158 |
+
)
|
159 |
+
causal_attention_mask.triu_(1)
|
160 |
+
causal_attention_mask = causal_attention_mask[None, ...]
|
161 |
+
self.register_buffer("causal_attention_mask", causal_attention_mask, persistent=False)
|
162 |
+
|
163 |
+
self.clip_mean = nn.Parameter(torch.zeros(1, clip_embed_dim))
|
164 |
+
self.clip_std = nn.Parameter(torch.zeros(1, clip_embed_dim))
|
165 |
+
|
166 |
+
@property
|
167 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
168 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
169 |
+
r"""
|
170 |
+
Returns:
|
171 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
172 |
+
indexed by its weight name.
|
173 |
+
"""
|
174 |
+
# set recursively
|
175 |
+
processors = {}
|
176 |
+
|
177 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
178 |
+
if hasattr(module, "set_processor"):
|
179 |
+
processors[f"{name}.processor"] = module.processor
|
180 |
+
|
181 |
+
for sub_name, child in module.named_children():
|
182 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
183 |
+
|
184 |
+
return processors
|
185 |
+
|
186 |
+
for name, module in self.named_children():
|
187 |
+
fn_recursive_add_processors(name, module, processors)
|
188 |
+
|
189 |
+
return processors
|
190 |
+
|
191 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
192 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
193 |
+
r"""
|
194 |
+
Sets the attention processor to use to compute attention.
|
195 |
+
|
196 |
+
Parameters:
|
197 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
198 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
199 |
+
for **all** `Attention` layers.
|
200 |
+
|
201 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
202 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
203 |
+
|
204 |
+
"""
|
205 |
+
count = len(self.attn_processors.keys())
|
206 |
+
|
207 |
+
if isinstance(processor, dict) and len(processor) != count:
|
208 |
+
raise ValueError(
|
209 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
210 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
211 |
+
)
|
212 |
+
|
213 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
214 |
+
if hasattr(module, "set_processor"):
|
215 |
+
if not isinstance(processor, dict):
|
216 |
+
module.set_processor(processor)
|
217 |
+
else:
|
218 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
219 |
+
|
220 |
+
for sub_name, child in module.named_children():
|
221 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
222 |
+
|
223 |
+
for name, module in self.named_children():
|
224 |
+
fn_recursive_attn_processor(name, module, processor)
|
225 |
+
|
226 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
227 |
+
def set_default_attn_processor(self):
|
228 |
+
"""
|
229 |
+
Disables custom attention processors and sets the default attention implementation.
|
230 |
+
"""
|
231 |
+
self.set_attn_processor(AttnProcessor())
|
232 |
+
|
233 |
+
def forward(
|
234 |
+
self,
|
235 |
+
hidden_states,
|
236 |
+
# timestep: Union[torch.Tensor, float, int],
|
237 |
+
proj_embedding: torch.FloatTensor,
|
238 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
239 |
+
attention_mask: Optional[torch.BoolTensor] = None,
|
240 |
+
return_dict: bool = True,
|
241 |
+
):
|
242 |
+
"""
|
243 |
+
The [`PriorTransformer`] forward method.
|
244 |
+
|
245 |
+
Args:
|
246 |
+
hidden_states (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
|
247 |
+
The currently predicted image embeddings.
|
248 |
+
timestep (`torch.LongTensor`):
|
249 |
+
Current denoising step.
|
250 |
+
proj_embedding (`torch.FloatTensor` of shape `(batch_size, embedding_dim)`):
|
251 |
+
Projected embedding vector the denoising process is conditioned on.
|
252 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_embeddings, embedding_dim)`):
|
253 |
+
Hidden states of the text embeddings the denoising process is conditioned on.
|
254 |
+
attention_mask (`torch.BoolTensor` of shape `(batch_size, num_embeddings)`):
|
255 |
+
Text mask for the text embeddings.
|
256 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
257 |
+
Whether or not to return a [`~models.prior_transformer.PriorTransformerOutput`] instead of a plain
|
258 |
+
tuple.
|
259 |
+
|
260 |
+
Returns:
|
261 |
+
[`~models.prior_transformer.PriorTransformerOutput`] or `tuple`:
|
262 |
+
If return_dict is True, a [`~models.prior_transformer.PriorTransformerOutput`] is returned, otherwise a
|
263 |
+
tuple is returned where the first element is the sample tensor.
|
264 |
+
"""
|
265 |
+
batch_size = hidden_states.shape[0]
|
266 |
+
|
267 |
+
# timesteps = timestep
|
268 |
+
# if not torch.is_tensor(timesteps):
|
269 |
+
# timesteps = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device)
|
270 |
+
# elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
271 |
+
# timesteps = timesteps[None].to(hidden_states.device)
|
272 |
+
|
273 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
274 |
+
# timesteps = timesteps * torch.ones(batch_size, dtype=timesteps.dtype, device=timesteps.device)
|
275 |
+
|
276 |
+
# timesteps_projected = self.time_proj(timesteps)
|
277 |
+
|
278 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
279 |
+
# but time_embedding might be fp16, so we need to cast here.
|
280 |
+
# timesteps_projected = timesteps_projected.to(dtype=self.dtype)
|
281 |
+
# time_embeddings = self.time_embedding(timesteps_projected)
|
282 |
+
|
283 |
+
if self.embedding_proj_norm is not None:
|
284 |
+
proj_embedding = self.embedding_proj_norm(proj_embedding)
|
285 |
+
|
286 |
+
proj_embeddings = self.embedding_proj(proj_embedding)
|
287 |
+
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
|
288 |
+
encoder_hidden_states = self.encoder_hidden_states_proj(encoder_hidden_states)
|
289 |
+
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
|
290 |
+
raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set")
|
291 |
+
|
292 |
+
hidden_states = self.proj_in(hidden_states)
|
293 |
+
|
294 |
+
positional_embeddings = self.positional_embedding.to(hidden_states.dtype)
|
295 |
+
|
296 |
+
additional_embeds = []
|
297 |
+
additional_embeddings_len = 0
|
298 |
+
|
299 |
+
if encoder_hidden_states is not None:
|
300 |
+
additional_embeds.append(encoder_hidden_states)
|
301 |
+
additional_embeddings_len += encoder_hidden_states.shape[1]
|
302 |
+
|
303 |
+
if len(proj_embeddings.shape) == 2:
|
304 |
+
proj_embeddings = proj_embeddings[:, None, :]
|
305 |
+
|
306 |
+
if len(hidden_states.shape) == 2:
|
307 |
+
hidden_states = hidden_states[:, None, :]
|
308 |
+
|
309 |
+
additional_embeds = additional_embeds + [
|
310 |
+
proj_embeddings,
|
311 |
+
# time_embeddings[:, None, :],
|
312 |
+
hidden_states,
|
313 |
+
]
|
314 |
+
|
315 |
+
if self.prd_embedding is not None:
|
316 |
+
prd_embedding = self.prd_embedding.to(hidden_states.dtype).expand(batch_size, -1, -1)
|
317 |
+
additional_embeds.append(prd_embedding)
|
318 |
+
|
319 |
+
hidden_states = torch.cat(
|
320 |
+
additional_embeds,
|
321 |
+
dim=1,
|
322 |
+
)
|
323 |
+
|
324 |
+
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
|
325 |
+
additional_embeddings_len = additional_embeddings_len + proj_embeddings.shape[1] + 1
|
326 |
+
if positional_embeddings.shape[1] < hidden_states.shape[1]:
|
327 |
+
positional_embeddings = F.pad(
|
328 |
+
positional_embeddings,
|
329 |
+
(
|
330 |
+
0,
|
331 |
+
0,
|
332 |
+
additional_embeddings_len,
|
333 |
+
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
|
334 |
+
),
|
335 |
+
value=0.0,
|
336 |
+
)
|
337 |
+
|
338 |
+
hidden_states = hidden_states + positional_embeddings
|
339 |
+
|
340 |
+
if attention_mask is not None:
|
341 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
342 |
+
attention_mask = F.pad(attention_mask, (0, self.additional_embeddings), value=0.0)
|
343 |
+
attention_mask = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype)
|
344 |
+
attention_mask = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0)
|
345 |
+
|
346 |
+
if self.norm_in is not None:
|
347 |
+
hidden_states = self.norm_in(hidden_states)
|
348 |
+
|
349 |
+
for block in self.transformer_blocks:
|
350 |
+
hidden_states = block(hidden_states, attention_mask=attention_mask)
|
351 |
+
|
352 |
+
hidden_states = self.norm_out(hidden_states)
|
353 |
+
|
354 |
+
if self.prd_embedding is not None:
|
355 |
+
hidden_states = hidden_states[:, -1]
|
356 |
+
else:
|
357 |
+
hidden_states = hidden_states[:, additional_embeddings_len:]
|
358 |
+
|
359 |
+
predicted_image_embedding = self.proj_to_clip_embeddings(hidden_states)
|
360 |
+
|
361 |
+
if not return_dict:
|
362 |
+
return (predicted_image_embedding,)
|
363 |
+
|
364 |
+
return PriorTransformerOutput(predicted_image_embedding=predicted_image_embedding)
|
365 |
+
|
366 |
+
def post_process_latents(self, prior_latents):
|
367 |
+
prior_latents = (prior_latents * self.clip_std) + self.clip_mean
|
368 |
+
return prior_latents
|