VAPO_data_demo / app.py
Dongfu Jiang
udpate
83fe087
raw
history blame
17.2 kB
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
import ast
import argparse
import glob
import pickle
import plotly
import gradio as gr
import numpy as np
import pandas as pd
import gradio as gr
import pandas as pd
from pathlib import Path
from difflib import Differ
import json
from constants import BANNER, CITATION_TEXT, WINRATE_HEATMAP, css, js_code, all_task_types, DEFAULT_LP, TASK_TYPE_STR, js_light
from datetime import datetime, timezone
from data_utils import load_eval_results, sample_an_eval_result, apply_length_penalty, post_processing, add_winrates, add_winrates_tasks
# from gradio.themes.utils import colors, fonts, sizes
from themes import Seafoam
import datasets
from huggingface_hub import HfApi
# from datasets import Dataset, load_dataset, concatenate_datasets
import os, uuid
from utils_display import model_info
from tqdm import tqdm
# get the last updated time from the elo_ranks.all.jsonl file
LAST_UPDATED = None
with open("_intro.md", "r") as f:
INTRO_MD = f.read()
with open("_about_us.md", "r") as f:
ABOUT_MD = f.read()
with open("_header.md", "r") as f:
HEADER_MD = f.read()
original_df, ablation_df = None, None
eval_results = load_eval_results()
available_models = [] # to be filled in later
import random
random.seed(42)
np.random.seed(42)
def sample_an_feedback(task_category, task_difficulty, task_quality, feedback_score):
def filter_examples(item):
if task_category and item['category'] not in task_category:
return False
if task_difficulty and item['difficulty'] not in task_difficulty:
return False
if task_quality and item['quality'] not in task_quality:
return False
if feedback_score and item['feedback']['processed']['score'] not in feedback_score:
return False
return True
valid_examples = dataset.filter(filter_examples, num_proc=4)
if len(valid_examples) == 0:
raise ValueError("No examples found for the selected filters. Please try again with different filters.")
print(f"Found {len(valid_examples)} examples for the selected filters.")
example = random.choice(valid_examples)
plan_history = {
"user": [
example['query'],
],
"assistant": [
example['response']
]
}
ground_history = {
"user": [
example['query'],
],
"assistant": [
example['revision']['processed']
]
}
result_dict = {
"session_id": example['id'],
"category": example['category'],
"difficulty": example['difficulty'],
"quality": example['quality'],
"intent": example['intent'],
"plan_history": plan_history,
"ground_history": ground_history,
# "pred": str(model_response_1['feedback']['processed']['score']) if model_response_1['feedback']['processed'] else "A",
# "answer": str(model_response_2['feedback']['processed']['score']) if model_response_2['feedback']['processed'] else "A",
"pred": example['model'], # model that generates the original response
"answer": example['revision']['model'], # model that generates the revised response
"correctness": example['feedback']['model'], # model that generates the feedback for the original response
"image": "file/data_dir/test_images/000000341196.jpg"
}
return result_dict
def diff_texts(text1, text2):
d = Differ()
return [
(token[2:], token[0] if token[0] != " " else None)
for token in d.compare(text1, text2)
]
def display_chat_history(task_category, task_difficulty, task_quality, feedback_score):
eval_item = sample_an_feedback(task_category, task_difficulty, task_quality, feedback_score)
print("---" * 10)
for key, value in eval_item.items():
print(f"{key}: {value}")
print("---" * 10)
# eval_item = sample_an_feedback()
session_id = eval_item["session_id"]
category = eval_item["category"]
prediction = eval_item["pred"]
gold_answer = eval_item["answer"]
correctness = eval_item["correctness"]
difficulty = eval_item["difficulty"]
quality = eval_item["quality"]
intent = eval_item["intent"]
if eval_item["image"]:
image_path = eval_item["image"]
else:
image_path = ""
chats_plan = []
for item_user, item_asst in zip(eval_item["plan_history"]["user"], eval_item["plan_history"]["assistant"]):
chats_plan += [item_user, item_asst]
chats_ground = []
for item_user, item_asst in zip(eval_item["ground_history"]["user"], eval_item["ground_history"]["assistant"]):
chats_ground += [item_user, item_asst]
chats_plan = [(chats_plan[i], chats_plan[i+1]) for i in range(0, len(chats_plan), 2)]
chats_ground = [(chats_ground[i], chats_ground[i+1]) for i in range(0, len(chats_ground), 2)]
task_metadata = f"- ๐Ÿ†”: `{session_id}` \n- **Category**: {category} \n- **Difficulty**: {difficulty} \n- **Quality**: {quality} \n- **Intent**: {intent}"
diff_text = diff_texts(chats_plan[-1][1], chats_ground[-1][1])
print(f"Category: {category}")
print(f"Difficulty: {difficulty}")
print(f"Quality: {quality}")
print(f"Intent: {intent}")
print(f"Session ID: {session_id}")
print(f"Original Response: {chats_plan}")
print(f"Revised Response: {chats_ground}")
if image_path != "":
image = f'<div style="text-align: center;"> <img src="{image_path}" style="height: 250px;"> </div>'
return category, chats_plan, chats_ground, task_metadata, prediction, gold_answer, correctness, image, diff_text
else:
return category, chats_plan, chats_ground, task_metadata, prediction, gold_answer, correctness, f'<div style="text-align: center;"> </div>', diff_text
def slider_change_main(length_penalty):
global original_df, ablation_df
adjusted_df = apply_length_penalty(original_df, ablation_df, length_penalty)
adjusted_df = adjusted_df[["Model", "Overall Elo", "Task-Avg Elo", "# battles", "Length"]]
adjusted_df = adjusted_df.sort_values(by="Overall Elo", ascending=False)
adjusted_df = add_winrates(adjusted_df)
adjusted_df = adjusted_df.drop(columns=["Length"])
return adjusted_df
def slider_change_full(length_penalty, show_winrate):
global original_df, ablation_df
adjusted_df = apply_length_penalty(original_df, ablation_df, length_penalty)
# sort the model by the "Task-Avg Elo" column
adjusted_df = adjusted_df.sort_values(by="Task-Avg Elo", ascending=False)
adjusted_df.drop(columns=["Overall Elo", "Task-Avg Elo", "# battles", "Length"], inplace=True)
if show_winrate == "none":
return adjusted_df
elif show_winrate == "gpt-3.5":
adjusted_df = add_winrates_tasks(adjusted_df, ref="gpt-3.5")
elif show_winrate == "gpt-4":
adjusted_df = add_winrates_tasks(adjusted_df, ref="gpt-4")
return adjusted_df
seafoam = Seafoam()
def build_demo(TYPES):
global available_categories, avaliable_difficulty, avaliable_quality, available_feedback_scores
with gr.Blocks(theme=gr.themes.Soft(), css=css, js=js_light) as demo:
gr.Markdown(HEADER_MD, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("๐Ÿ” Explore", elem_id="od-benchmark-tab-table", id=2):
with gr.Row():
btn_show_history = gr.Button("๐ŸŽฒ Click here to sample an example of Feedbacks ", elem_classes="sample_button")
with gr.Row():
with gr.Column():
with gr.Accordion("Choose task difficulty", open=False, elem_classes="accordion-label"):
task_difficulty = gr.CheckboxGroup(avaliable_difficulty, info="", value=avaliable_difficulty, show_label=False, elem_id="select-difficulty")
clear_button = gr.Button("Clear", elem_classes="btn_boderline_gray", scale=1)
# clear the selected_models
clear_button.click(lambda: {task_difficulty: {"value": [], "__type__": "update"}}, inputs=[], outputs=[task_difficulty])
with gr.Accordion("Choose task quality", open=False, elem_classes="accordion-label"):
task_quality = gr.CheckboxGroup(avaliable_quality, info="", value=avaliable_quality, show_label=False, elem_id="select-quality")
clear_button = gr.Button("Clear", elem_classes="btn_boderline_gray", scale=1)
# clear the selected_models
clear_button.click(lambda: {task_quality: {"value": [], "__type__": "update"}}, inputs=[], outputs=[task_quality])
with gr.Accordion("Choose feedback score", open=False, elem_classes="accordion-label"):
feedback_score = gr.CheckboxGroup(available_feedback_scores, info="", value=available_feedback_scores, show_label=False, elem_id="select-feedback")
clear_button = gr.Button("Clear", elem_classes="btn_boderline_gray", scale=1)
# clear the selected_models
clear_button.click(lambda: {feedback_score: {"value": [], "__type__": "update"}}, inputs=[], outputs=[feedback_score])
with gr.Accordion("Choose task category", open=False, elem_classes="accordion-label"):
task_category = gr.CheckboxGroup(available_categories, info="", value=available_categories, show_label=False, elem_id="select-category")
clear_button = gr.Button("Clear", elem_classes="btn_boderline_gray", scale=1)
# clear the selected_models
clear_button.click(lambda: {task_category: {"value": [], "__type__": "update"}}, inputs=[], outputs=[task_category])
with gr.Row(visible=False):
with gr.Column(scale=1.5):
with gr.Accordion("๐Ÿ“ Task Description", open=True, elem_classes="accordion-label"):
task = gr.Markdown("", elem_classes="markdown-text-tiny")
task.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Column(scale=1):
with gr.Accordion("Input Image (optional)", open=True, elem_classes="accordion-label"):
image = gr.HTML("", elem_id="markdown-text-tiny")
image.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Row():
with gr.Column():
with gr.Accordion("๐Ÿ“ Task Metadata", open=True, elem_classes="accordion-label"):
task_metadata = gr.Markdown("", elem_classes="markdown-text-tiny")
task_metadata.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Row():
with gr.Column(scale=1.1):
# gr.Markdown("## ๐Ÿ“ข Plan Module Process History w/ <span style='background-color: #FDFDBA;'>Execution Module Results</span>", elem_classes="accordion-label")
gr.Markdown("## ๐Ÿ“ข Model Original Response", elem_classes="accordion-label")
Chatbot_Common_Plan = gr.Chatbot(avatar_images=["human_icon.jpeg", "ai_icon.png"], height=1000, container=False, label="Common Plan History", likeable=False, show_share_button=False, show_label=True, elem_classes="chat-common", layout="bubble")
Chatbot_Common_Plan.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Column(scale=1):
# gr.Markdown("## ๐Ÿ“ข Ground Module Process History", elem_classes="accordion-label")
gr.Markdown("## ๐Ÿ“ข Model Revised Response", elem_classes="accordion-label")
Chatbot_Common_Ground = gr.Chatbot(avatar_images=["human_icon.jpeg", "ai_icon.png"], height=1000, container=False, label="Common Ground History", likeable=False, show_share_button=False, show_label=True, elem_classes="chat-common", layout="bubble")
Chatbot_Common_Ground.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Row():
with gr.Column():
with gr.Accordion("Highlighted differences", open=True, elem_classes="accordion-label"):
highlighted_diff = gr.HighlightedText(label="Highlighted differences",
combine_adjacent=False,
show_legend=True,
color_map={"+": "green", "-": "red"})
with gr.Row():
with gr.Column():
# with gr.Accordion("๐Ÿ™‹ Prediction", open=True, elem_classes="accordion-label"):
with gr.Accordion("Policy Model", open=True, elem_classes="accordion-label"):
prediction = gr.Markdown("", elem_classes="markdown-text-tiny")
prediction.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Column():
# with gr.Accordion("๐Ÿ”‘ Ground-Truth Answer", open=True, elem_classes="accordion-label"):
with gr.Accordion("Revision Model", open=True, elem_classes="accordion-label"):
gold_answer = gr.HTML("", elem_id="markdown-text-tiny")
gold_answer.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Column(visible=True):
with gr.Accordion("Feedback Model", open=True, elem_classes="accordion-label"):
correctness = gr.HTML("", elem_id="markdown-text-tiny")
correctness.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
# Display chat history when button is clicked
btn_show_history.click(fn=display_chat_history,
inputs=[task_category, task_difficulty, task_quality, feedback_score],
outputs=[task, Chatbot_Common_Plan, Chatbot_Common_Ground, task_metadata, prediction, gold_answer, correctness, image, highlighted_diff])
with gr.TabItem("๐Ÿ“ฎ About Us", elem_id="od-benchmark-tab-table", id=3, visible=False):
gr.Markdown(ABOUT_MD, elem_classes="markdown-text")
gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text-small")
with gr.Row():
with gr.Accordion("๐Ÿ“™ Citation", open=False, elem_classes="accordion-label", visible=False):
gr.Textbox(
value=CITATION_TEXT,
lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
show_copy_button=True)
# ).style(show_copy_button=True)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--result_file", help="Path to results table", default="data_dir/pair_feedbacks_1.jsonl")
parser.add_argument("--length_balation_file", help="Path to results table", default="data_dir/elo_ranks.length_ablation.all.jsonl")
parser.add_argument("--skip_empty_result_file", help="Path to results table", default="data_dir/elo_ranks.skip_empty.all.jsonl")
parser.add_argument("--skip_empty_length_balation_file", help="Path to results table", default="data_dir/elo_ranks.skip_empty.length_ablation.all.jsonl")
args = parser.parse_args()
LAST_UPDATED = datetime.fromtimestamp(Path(args.result_file).stat().st_mtime, tz=timezone.utc).strftime("%Y-%m-%d %H:%M:%S")
# available_models = sorted(list(set(list(original_df["model name "]))))
# available_models = list(model_info.keys())
# dataset = datasets.Dataset.from_json(args.result_file)
dataset = datasets.load_dataset("DongfuJiang/VAPO", "pair_feedback_iter_1", split='train')
avaliable_difficulty = sorted(list(set(dataset['difficulty'])))
avaliable_quality = sorted(list(set(dataset['quality'])))
available_feedback_scores = sorted(list(set([item['feedback']['processed']['score'] for item in dataset])))
available_categories = sorted(list(set(dataset['category'])))
TYPES = ["markdown", "number"]
demo = build_demo(TYPES)
demo.launch(share=args.share, allowed_paths=["."], height=1000)