Spaces:
Sleeping
Sleeping
File size: 17,235 Bytes
e90fa51 83fe087 e90fa51 1d6e701 e90fa51 325d8fa e90fa51 1d6e701 83fe087 1d6e701 83fe087 a0937f6 1d6e701 83fe087 1d6e701 83fe087 1d6e701 83fe087 1d6e701 83fe087 1d6e701 83fe087 1d6e701 325d8fa 83fe087 1d6e701 83fe087 1d6e701 316e24d 83fe087 316e24d 83fe087 316e24d e90fa51 83fe087 e90fa51 83fe087 e90fa51 83fe087 e90fa51 83fe087 e90fa51 83fe087 e90fa51 83fe087 e90fa51 d77e70b e90fa51 83fe087 e90fa51 83fe087 325d8fa e90fa51 fa390d6 e90fa51 316e24d fa390d6 316e24d e90fa51 308535b 1d6e701 83fe087 308535b e90fa51 308535b 1d6e701 83fe087 308535b e90fa51 316e24d 83fe087 316e24d 1d6e701 83fe087 316e24d 1d6e701 83fe087 8786635 316e24d 325d8fa 83fe087 8786635 316e24d e90fa51 83fe087 e90fa51 325d8fa e90fa51 325d8fa e90fa51 83fe087 e90fa51 325d8fa 83fe087 e90fa51 83fe087 e90fa51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
import ast
import argparse
import glob
import pickle
import plotly
import gradio as gr
import numpy as np
import pandas as pd
import gradio as gr
import pandas as pd
from pathlib import Path
from difflib import Differ
import json
from constants import BANNER, CITATION_TEXT, WINRATE_HEATMAP, css, js_code, all_task_types, DEFAULT_LP, TASK_TYPE_STR, js_light
from datetime import datetime, timezone
from data_utils import load_eval_results, sample_an_eval_result, apply_length_penalty, post_processing, add_winrates, add_winrates_tasks
# from gradio.themes.utils import colors, fonts, sizes
from themes import Seafoam
import datasets
from huggingface_hub import HfApi
# from datasets import Dataset, load_dataset, concatenate_datasets
import os, uuid
from utils_display import model_info
from tqdm import tqdm
# get the last updated time from the elo_ranks.all.jsonl file
LAST_UPDATED = None
with open("_intro.md", "r") as f:
INTRO_MD = f.read()
with open("_about_us.md", "r") as f:
ABOUT_MD = f.read()
with open("_header.md", "r") as f:
HEADER_MD = f.read()
original_df, ablation_df = None, None
eval_results = load_eval_results()
available_models = [] # to be filled in later
import random
random.seed(42)
np.random.seed(42)
def sample_an_feedback(task_category, task_difficulty, task_quality, feedback_score):
def filter_examples(item):
if task_category and item['category'] not in task_category:
return False
if task_difficulty and item['difficulty'] not in task_difficulty:
return False
if task_quality and item['quality'] not in task_quality:
return False
if feedback_score and item['feedback']['processed']['score'] not in feedback_score:
return False
return True
valid_examples = dataset.filter(filter_examples, num_proc=4)
if len(valid_examples) == 0:
raise ValueError("No examples found for the selected filters. Please try again with different filters.")
print(f"Found {len(valid_examples)} examples for the selected filters.")
example = random.choice(valid_examples)
plan_history = {
"user": [
example['query'],
],
"assistant": [
example['response']
]
}
ground_history = {
"user": [
example['query'],
],
"assistant": [
example['revision']['processed']
]
}
result_dict = {
"session_id": example['id'],
"category": example['category'],
"difficulty": example['difficulty'],
"quality": example['quality'],
"intent": example['intent'],
"plan_history": plan_history,
"ground_history": ground_history,
# "pred": str(model_response_1['feedback']['processed']['score']) if model_response_1['feedback']['processed'] else "A",
# "answer": str(model_response_2['feedback']['processed']['score']) if model_response_2['feedback']['processed'] else "A",
"pred": example['model'], # model that generates the original response
"answer": example['revision']['model'], # model that generates the revised response
"correctness": example['feedback']['model'], # model that generates the feedback for the original response
"image": "file/data_dir/test_images/000000341196.jpg"
}
return result_dict
def diff_texts(text1, text2):
d = Differ()
return [
(token[2:], token[0] if token[0] != " " else None)
for token in d.compare(text1, text2)
]
def display_chat_history(task_category, task_difficulty, task_quality, feedback_score):
eval_item = sample_an_feedback(task_category, task_difficulty, task_quality, feedback_score)
print("---" * 10)
for key, value in eval_item.items():
print(f"{key}: {value}")
print("---" * 10)
# eval_item = sample_an_feedback()
session_id = eval_item["session_id"]
category = eval_item["category"]
prediction = eval_item["pred"]
gold_answer = eval_item["answer"]
correctness = eval_item["correctness"]
difficulty = eval_item["difficulty"]
quality = eval_item["quality"]
intent = eval_item["intent"]
if eval_item["image"]:
image_path = eval_item["image"]
else:
image_path = ""
chats_plan = []
for item_user, item_asst in zip(eval_item["plan_history"]["user"], eval_item["plan_history"]["assistant"]):
chats_plan += [item_user, item_asst]
chats_ground = []
for item_user, item_asst in zip(eval_item["ground_history"]["user"], eval_item["ground_history"]["assistant"]):
chats_ground += [item_user, item_asst]
chats_plan = [(chats_plan[i], chats_plan[i+1]) for i in range(0, len(chats_plan), 2)]
chats_ground = [(chats_ground[i], chats_ground[i+1]) for i in range(0, len(chats_ground), 2)]
task_metadata = f"- ๐: `{session_id}` \n- **Category**: {category} \n- **Difficulty**: {difficulty} \n- **Quality**: {quality} \n- **Intent**: {intent}"
diff_text = diff_texts(chats_plan[-1][1], chats_ground[-1][1])
print(f"Category: {category}")
print(f"Difficulty: {difficulty}")
print(f"Quality: {quality}")
print(f"Intent: {intent}")
print(f"Session ID: {session_id}")
print(f"Original Response: {chats_plan}")
print(f"Revised Response: {chats_ground}")
if image_path != "":
image = f'<div style="text-align: center;"> <img src="{image_path}" style="height: 250px;"> </div>'
return category, chats_plan, chats_ground, task_metadata, prediction, gold_answer, correctness, image, diff_text
else:
return category, chats_plan, chats_ground, task_metadata, prediction, gold_answer, correctness, f'<div style="text-align: center;"> </div>', diff_text
def slider_change_main(length_penalty):
global original_df, ablation_df
adjusted_df = apply_length_penalty(original_df, ablation_df, length_penalty)
adjusted_df = adjusted_df[["Model", "Overall Elo", "Task-Avg Elo", "# battles", "Length"]]
adjusted_df = adjusted_df.sort_values(by="Overall Elo", ascending=False)
adjusted_df = add_winrates(adjusted_df)
adjusted_df = adjusted_df.drop(columns=["Length"])
return adjusted_df
def slider_change_full(length_penalty, show_winrate):
global original_df, ablation_df
adjusted_df = apply_length_penalty(original_df, ablation_df, length_penalty)
# sort the model by the "Task-Avg Elo" column
adjusted_df = adjusted_df.sort_values(by="Task-Avg Elo", ascending=False)
adjusted_df.drop(columns=["Overall Elo", "Task-Avg Elo", "# battles", "Length"], inplace=True)
if show_winrate == "none":
return adjusted_df
elif show_winrate == "gpt-3.5":
adjusted_df = add_winrates_tasks(adjusted_df, ref="gpt-3.5")
elif show_winrate == "gpt-4":
adjusted_df = add_winrates_tasks(adjusted_df, ref="gpt-4")
return adjusted_df
seafoam = Seafoam()
def build_demo(TYPES):
global available_categories, avaliable_difficulty, avaliable_quality, available_feedback_scores
with gr.Blocks(theme=gr.themes.Soft(), css=css, js=js_light) as demo:
gr.Markdown(HEADER_MD, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("๐ Explore", elem_id="od-benchmark-tab-table", id=2):
with gr.Row():
btn_show_history = gr.Button("๐ฒ Click here to sample an example of Feedbacks ", elem_classes="sample_button")
with gr.Row():
with gr.Column():
with gr.Accordion("Choose task difficulty", open=False, elem_classes="accordion-label"):
task_difficulty = gr.CheckboxGroup(avaliable_difficulty, info="", value=avaliable_difficulty, show_label=False, elem_id="select-difficulty")
clear_button = gr.Button("Clear", elem_classes="btn_boderline_gray", scale=1)
# clear the selected_models
clear_button.click(lambda: {task_difficulty: {"value": [], "__type__": "update"}}, inputs=[], outputs=[task_difficulty])
with gr.Accordion("Choose task quality", open=False, elem_classes="accordion-label"):
task_quality = gr.CheckboxGroup(avaliable_quality, info="", value=avaliable_quality, show_label=False, elem_id="select-quality")
clear_button = gr.Button("Clear", elem_classes="btn_boderline_gray", scale=1)
# clear the selected_models
clear_button.click(lambda: {task_quality: {"value": [], "__type__": "update"}}, inputs=[], outputs=[task_quality])
with gr.Accordion("Choose feedback score", open=False, elem_classes="accordion-label"):
feedback_score = gr.CheckboxGroup(available_feedback_scores, info="", value=available_feedback_scores, show_label=False, elem_id="select-feedback")
clear_button = gr.Button("Clear", elem_classes="btn_boderline_gray", scale=1)
# clear the selected_models
clear_button.click(lambda: {feedback_score: {"value": [], "__type__": "update"}}, inputs=[], outputs=[feedback_score])
with gr.Accordion("Choose task category", open=False, elem_classes="accordion-label"):
task_category = gr.CheckboxGroup(available_categories, info="", value=available_categories, show_label=False, elem_id="select-category")
clear_button = gr.Button("Clear", elem_classes="btn_boderline_gray", scale=1)
# clear the selected_models
clear_button.click(lambda: {task_category: {"value": [], "__type__": "update"}}, inputs=[], outputs=[task_category])
with gr.Row(visible=False):
with gr.Column(scale=1.5):
with gr.Accordion("๐ Task Description", open=True, elem_classes="accordion-label"):
task = gr.Markdown("", elem_classes="markdown-text-tiny")
task.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Column(scale=1):
with gr.Accordion("Input Image (optional)", open=True, elem_classes="accordion-label"):
image = gr.HTML("", elem_id="markdown-text-tiny")
image.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Row():
with gr.Column():
with gr.Accordion("๐ Task Metadata", open=True, elem_classes="accordion-label"):
task_metadata = gr.Markdown("", elem_classes="markdown-text-tiny")
task_metadata.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Row():
with gr.Column(scale=1.1):
# gr.Markdown("## ๐ข Plan Module Process History w/ <span style='background-color: #FDFDBA;'>Execution Module Results</span>", elem_classes="accordion-label")
gr.Markdown("## ๐ข Model Original Response", elem_classes="accordion-label")
Chatbot_Common_Plan = gr.Chatbot(avatar_images=["human_icon.jpeg", "ai_icon.png"], height=1000, container=False, label="Common Plan History", likeable=False, show_share_button=False, show_label=True, elem_classes="chat-common", layout="bubble")
Chatbot_Common_Plan.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Column(scale=1):
# gr.Markdown("## ๐ข Ground Module Process History", elem_classes="accordion-label")
gr.Markdown("## ๐ข Model Revised Response", elem_classes="accordion-label")
Chatbot_Common_Ground = gr.Chatbot(avatar_images=["human_icon.jpeg", "ai_icon.png"], height=1000, container=False, label="Common Ground History", likeable=False, show_share_button=False, show_label=True, elem_classes="chat-common", layout="bubble")
Chatbot_Common_Ground.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Row():
with gr.Column():
with gr.Accordion("Highlighted differences", open=True, elem_classes="accordion-label"):
highlighted_diff = gr.HighlightedText(label="Highlighted differences",
combine_adjacent=False,
show_legend=True,
color_map={"+": "green", "-": "red"})
with gr.Row():
with gr.Column():
# with gr.Accordion("๐ Prediction", open=True, elem_classes="accordion-label"):
with gr.Accordion("Policy Model", open=True, elem_classes="accordion-label"):
prediction = gr.Markdown("", elem_classes="markdown-text-tiny")
prediction.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Column():
# with gr.Accordion("๐ Ground-Truth Answer", open=True, elem_classes="accordion-label"):
with gr.Accordion("Revision Model", open=True, elem_classes="accordion-label"):
gold_answer = gr.HTML("", elem_id="markdown-text-tiny")
gold_answer.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
with gr.Column(visible=True):
with gr.Accordion("Feedback Model", open=True, elem_classes="accordion-label"):
correctness = gr.HTML("", elem_id="markdown-text-tiny")
correctness.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
# Display chat history when button is clicked
btn_show_history.click(fn=display_chat_history,
inputs=[task_category, task_difficulty, task_quality, feedback_score],
outputs=[task, Chatbot_Common_Plan, Chatbot_Common_Ground, task_metadata, prediction, gold_answer, correctness, image, highlighted_diff])
with gr.TabItem("๐ฎ About Us", elem_id="od-benchmark-tab-table", id=3, visible=False):
gr.Markdown(ABOUT_MD, elem_classes="markdown-text")
gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text-small")
with gr.Row():
with gr.Accordion("๐ Citation", open=False, elem_classes="accordion-label", visible=False):
gr.Textbox(
value=CITATION_TEXT,
lines=7,
label="Copy the BibTeX snippet to cite this source",
elem_id="citation-button",
show_copy_button=True)
# ).style(show_copy_button=True)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true")
parser.add_argument("--result_file", help="Path to results table", default="data_dir/pair_feedbacks_1.jsonl")
parser.add_argument("--length_balation_file", help="Path to results table", default="data_dir/elo_ranks.length_ablation.all.jsonl")
parser.add_argument("--skip_empty_result_file", help="Path to results table", default="data_dir/elo_ranks.skip_empty.all.jsonl")
parser.add_argument("--skip_empty_length_balation_file", help="Path to results table", default="data_dir/elo_ranks.skip_empty.length_ablation.all.jsonl")
args = parser.parse_args()
LAST_UPDATED = datetime.fromtimestamp(Path(args.result_file).stat().st_mtime, tz=timezone.utc).strftime("%Y-%m-%d %H:%M:%S")
# available_models = sorted(list(set(list(original_df["model name "]))))
# available_models = list(model_info.keys())
# dataset = datasets.Dataset.from_json(args.result_file)
dataset = datasets.load_dataset("DongfuJiang/VAPO", "pair_feedback_iter_1", split='train')
avaliable_difficulty = sorted(list(set(dataset['difficulty'])))
avaliable_quality = sorted(list(set(dataset['quality'])))
available_feedback_scores = sorted(list(set([item['feedback']['processed']['score'] for item in dataset])))
available_categories = sorted(list(set(dataset['category'])))
TYPES = ["markdown", "number"]
demo = build_demo(TYPES)
demo.launch(share=args.share, allowed_paths=["."], height=1000)
|