File size: 17,235 Bytes
e90fa51
 
 
 
 
 
 
 
 
 
 
 
83fe087
e90fa51
 
 
 
 
 
1d6e701
e90fa51
 
 
 
325d8fa
e90fa51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d6e701
 
 
 
83fe087
 
 
 
 
 
 
 
 
 
 
 
1d6e701
83fe087
 
 
 
 
 
 
a0937f6
1d6e701
 
83fe087
1d6e701
 
83fe087
1d6e701
 
 
 
 
83fe087
1d6e701
 
83fe087
1d6e701
 
 
 
83fe087
 
 
 
 
1d6e701
 
325d8fa
 
83fe087
 
 
1d6e701
 
 
83fe087
 
 
 
 
 
 
 
 
 
 
1d6e701
 
 
 
 
 
316e24d
83fe087
316e24d
 
 
83fe087
 
 
316e24d
e90fa51
 
 
 
 
 
 
 
 
 
 
 
83fe087
 
 
e90fa51
83fe087
 
 
 
 
 
 
e90fa51
 
83fe087
e90fa51
83fe087
e90fa51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83fe087
e90fa51
 
83fe087
e90fa51
 
 
 
 
 
 
d77e70b
e90fa51
 
 
83fe087
 
 
e90fa51
 
83fe087
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325d8fa
e90fa51
 
 
 
 
 
 
fa390d6
e90fa51
 
316e24d
 
fa390d6
316e24d
 
 
e90fa51
308535b
1d6e701
83fe087
308535b
e90fa51
308535b
1d6e701
83fe087
308535b
e90fa51
316e24d
83fe087
 
 
 
 
 
 
 
316e24d
 
1d6e701
83fe087
316e24d
 
 
 
1d6e701
83fe087
8786635
316e24d
 
325d8fa
83fe087
8786635
316e24d
e90fa51
 
83fe087
 
 
e90fa51
325d8fa
e90fa51
 
 
 
325d8fa
e90fa51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83fe087
e90fa51
 
 
 
 
 
 
 
325d8fa
 
83fe087
 
e90fa51
83fe087
 
 
 
e90fa51
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
import ast
import argparse
import glob
import pickle
import plotly
import gradio as gr
import numpy as np
import pandas as pd
import gradio as gr
import pandas as pd
from pathlib import Path
from difflib import Differ
import json
from constants import BANNER, CITATION_TEXT, WINRATE_HEATMAP, css, js_code, all_task_types, DEFAULT_LP, TASK_TYPE_STR, js_light
from datetime import datetime, timezone
from data_utils import load_eval_results, sample_an_eval_result, apply_length_penalty, post_processing, add_winrates, add_winrates_tasks
# from gradio.themes.utils import colors, fonts, sizes
from themes import Seafoam
import datasets
from huggingface_hub import HfApi
# from datasets import Dataset, load_dataset, concatenate_datasets
import os, uuid 
from utils_display import model_info
from tqdm import tqdm

# get the last updated time from the elo_ranks.all.jsonl file
LAST_UPDATED = None 
with open("_intro.md", "r") as f:
    INTRO_MD = f.read()

with open("_about_us.md", "r") as f:
    ABOUT_MD = f.read()

with open("_header.md", "r") as f:
    HEADER_MD = f.read()

original_df, ablation_df = None, None
eval_results = load_eval_results() 
 
available_models = [] # to be filled in later


import random
random.seed(42)
np.random.seed(42)
def sample_an_feedback(task_category, task_difficulty, task_quality, feedback_score):

    def filter_examples(item):
        if task_category and item['category'] not in task_category:
            return False
        if task_difficulty and item['difficulty'] not in task_difficulty:
            return False
        if task_quality and item['quality'] not in task_quality:
            return False
        if feedback_score and item['feedback']['processed']['score'] not in feedback_score:
            return False
        return True
    
    valid_examples = dataset.filter(filter_examples, num_proc=4)

    if len(valid_examples) == 0:
        raise ValueError("No examples found for the selected filters. Please try again with different filters.")
    print(f"Found {len(valid_examples)} examples for the selected filters.")

    example = random.choice(valid_examples)

    plan_history = {
        "user": [
            example['query'],
        ],
        "assistant": [
            example['response']
        ]
    }

    ground_history = {
        "user": [
            example['query'],
        ],
        "assistant": [
            example['revision']['processed']
        ]
    }

    result_dict = {
        "session_id": example['id'],
        "category": example['category'],
        "difficulty": example['difficulty'],
        "quality": example['quality'],
        "intent": example['intent'],
        "plan_history": plan_history,
        "ground_history": ground_history,
        # "pred": str(model_response_1['feedback']['processed']['score']) if model_response_1['feedback']['processed'] else "A",
        # "answer": str(model_response_2['feedback']['processed']['score']) if model_response_2['feedback']['processed'] else "A",
        "pred": example['model'], # model that generates the original response
        "answer": example['revision']['model'], # model that generates the revised response
        "correctness": example['feedback']['model'], # model that generates the feedback for the original response
        "image": "file/data_dir/test_images/000000341196.jpg"
    }
    return result_dict


def diff_texts(text1, text2):
    d = Differ()
    return [
        (token[2:], token[0] if token[0] != " " else None)
        for token in d.compare(text1, text2)
    ]

def display_chat_history(task_category, task_difficulty, task_quality, feedback_score):
    eval_item = sample_an_feedback(task_category, task_difficulty, task_quality, feedback_score)
    print("---" * 10)
    for key, value in eval_item.items():
        print(f"{key}: {value}")
    print("---" * 10)
    
    # eval_item = sample_an_feedback()
    session_id = eval_item["session_id"]
    category = eval_item["category"]
    prediction = eval_item["pred"]
    gold_answer = eval_item["answer"]
    correctness = eval_item["correctness"]
    difficulty = eval_item["difficulty"]
    quality = eval_item["quality"]
    intent = eval_item["intent"]
    
    if eval_item["image"]:
        image_path = eval_item["image"]
    else:
        image_path = ""
    chats_plan = []
    for item_user, item_asst in zip(eval_item["plan_history"]["user"], eval_item["plan_history"]["assistant"]):
        chats_plan += [item_user, item_asst]
    chats_ground = []
    for item_user, item_asst in zip(eval_item["ground_history"]["user"], eval_item["ground_history"]["assistant"]):
        chats_ground += [item_user, item_asst]
    chats_plan = [(chats_plan[i], chats_plan[i+1]) for i in range(0, len(chats_plan), 2)]
    chats_ground = [(chats_ground[i], chats_ground[i+1]) for i in range(0, len(chats_ground), 2)]
    task_metadata = f"- ๐Ÿ†”: `{session_id}` \n- **Category**: {category} \n- **Difficulty**: {difficulty} \n- **Quality**: {quality} \n- **Intent**: {intent}"

    diff_text = diff_texts(chats_plan[-1][1], chats_ground[-1][1])
    
    print(f"Category: {category}")
    print(f"Difficulty: {difficulty}")
    print(f"Quality: {quality}")
    print(f"Intent: {intent}")
    print(f"Session ID: {session_id}")
    print(f"Original Response: {chats_plan}")
    print(f"Revised Response: {chats_ground}")
    if image_path != "":
        image = f'<div style="text-align: center;"> <img src="{image_path}" style="height: 250px;"> </div>'
        return category, chats_plan, chats_ground, task_metadata, prediction, gold_answer, correctness, image, diff_text
    else:
        return category, chats_plan, chats_ground, task_metadata, prediction, gold_answer, correctness, f'<div style="text-align: center;"> </div>', diff_text




def slider_change_main(length_penalty):
    global original_df, ablation_df
    adjusted_df = apply_length_penalty(original_df, ablation_df, length_penalty) 
    adjusted_df = adjusted_df[["Model", "Overall Elo", "Task-Avg Elo", "# battles", "Length"]]
    adjusted_df = adjusted_df.sort_values(by="Overall Elo", ascending=False)
    adjusted_df = add_winrates(adjusted_df) 
    adjusted_df = adjusted_df.drop(columns=["Length"])
    return adjusted_df

def slider_change_full(length_penalty, show_winrate):
    global original_df, ablation_df
    adjusted_df = apply_length_penalty(original_df, ablation_df, length_penalty)
    # sort the model by the "Task-Avg Elo" column
    adjusted_df = adjusted_df.sort_values(by="Task-Avg Elo", ascending=False)
    adjusted_df.drop(columns=["Overall Elo", "Task-Avg Elo", "# battles", "Length"], inplace=True)
    if show_winrate == "none":
        return adjusted_df
    elif show_winrate == "gpt-3.5":
        adjusted_df = add_winrates_tasks(adjusted_df, ref="gpt-3.5")
    elif show_winrate == "gpt-4":
        adjusted_df = add_winrates_tasks(adjusted_df, ref="gpt-4")
    return adjusted_df


seafoam = Seafoam()
def build_demo(TYPES):
    global available_categories, avaliable_difficulty, avaliable_quality, available_feedback_scores
    with gr.Blocks(theme=gr.themes.Soft(), css=css, js=js_light) as demo:
        gr.Markdown(HEADER_MD, elem_classes="markdown-text")

        with gr.Tabs(elem_classes="tab-buttons") as tabs:
            with gr.TabItem("๐Ÿ” Explore", elem_id="od-benchmark-tab-table", id=2): 

                with gr.Row(): 
                    btn_show_history = gr.Button("๐ŸŽฒ  Click here to sample an example of Feedbacks ", elem_classes="sample_button")

                with gr.Row():
                    with gr.Column():
                        
                        with gr.Accordion("Choose task difficulty", open=False, elem_classes="accordion-label"):
                            task_difficulty = gr.CheckboxGroup(avaliable_difficulty, info="", value=avaliable_difficulty, show_label=False, elem_id="select-difficulty")
                            clear_button = gr.Button("Clear", elem_classes="btn_boderline_gray", scale=1)
                            # clear the selected_models
                            clear_button.click(lambda: {task_difficulty: {"value": [], "__type__": "update"}}, inputs=[], outputs=[task_difficulty])
                        with gr.Accordion("Choose task quality", open=False, elem_classes="accordion-label"):
                            task_quality = gr.CheckboxGroup(avaliable_quality, info="", value=avaliable_quality, show_label=False, elem_id="select-quality")
                            clear_button = gr.Button("Clear", elem_classes="btn_boderline_gray", scale=1)
                            # clear the selected_models
                            clear_button.click(lambda: {task_quality: {"value": [], "__type__": "update"}}, inputs=[], outputs=[task_quality])
                        with gr.Accordion("Choose feedback score", open=False, elem_classes="accordion-label"):
                            feedback_score = gr.CheckboxGroup(available_feedback_scores, info="", value=available_feedback_scores, show_label=False, elem_id="select-feedback")
                            clear_button = gr.Button("Clear", elem_classes="btn_boderline_gray", scale=1)
                            # clear the selected_models
                            clear_button.click(lambda: {feedback_score: {"value": [], "__type__": "update"}}, inputs=[], outputs=[feedback_score])

                        with gr.Accordion("Choose task category", open=False, elem_classes="accordion-label"):
                            task_category = gr.CheckboxGroup(available_categories, info="", value=available_categories, show_label=False, elem_id="select-category")
                            clear_button = gr.Button("Clear", elem_classes="btn_boderline_gray", scale=1)
                            # clear the selected_models
                            clear_button.click(lambda: {task_category: {"value": [], "__type__": "update"}}, inputs=[], outputs=[task_category])

                with gr.Row(visible=False):
                    with gr.Column(scale=1.5):
                        with gr.Accordion("๐Ÿ“ Task Description", open=True, elem_classes="accordion-label"):
                            task = gr.Markdown("", elem_classes="markdown-text-tiny")
                            task.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
                    
                    with gr.Column(scale=1):
                        with gr.Accordion("Input Image (optional)", open=True, elem_classes="accordion-label"):
                            image = gr.HTML("", elem_id="markdown-text-tiny")
                            image.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)

                with gr.Row():
                    with gr.Column():
                        with gr.Accordion("๐Ÿ“ Task Metadata", open=True, elem_classes="accordion-label"):
                            task_metadata = gr.Markdown("", elem_classes="markdown-text-tiny")
                            task_metadata.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)

                with gr.Row():
                    with gr.Column(scale=1.1):
                        # gr.Markdown("## ๐Ÿ“ข Plan Module Process History w/ <span style='background-color: #FDFDBA;'>Execution Module Results</span>", elem_classes="accordion-label")
                        gr.Markdown("## ๐Ÿ“ข Model Original Response", elem_classes="accordion-label")
                        Chatbot_Common_Plan = gr.Chatbot(avatar_images=["human_icon.jpeg", "ai_icon.png"], height=1000, container=False, label="Common Plan History", likeable=False, show_share_button=False, show_label=True, elem_classes="chat-common", layout="bubble")
                        Chatbot_Common_Plan.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
                    with gr.Column(scale=1):
                        # gr.Markdown("## ๐Ÿ“ข Ground Module Process History", elem_classes="accordion-label")
                        gr.Markdown("## ๐Ÿ“ข Model Revised Response", elem_classes="accordion-label")
                        Chatbot_Common_Ground = gr.Chatbot(avatar_images=["human_icon.jpeg", "ai_icon.png"], height=1000, container=False, label="Common Ground History", likeable=False, show_share_button=False, show_label=True, elem_classes="chat-common", layout="bubble")
                        Chatbot_Common_Ground.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)

                with gr.Row():
                    with gr.Column():
                        with gr.Accordion("Highlighted differences", open=True, elem_classes="accordion-label"):
                            highlighted_diff = gr.HighlightedText(label="Highlighted differences", 
                                                            combine_adjacent=False,
                                                            show_legend=True,
                                                            color_map={"+": "green", "-": "red"})

                with gr.Row():
                    with gr.Column():
                        # with gr.Accordion("๐Ÿ™‹ Prediction", open=True, elem_classes="accordion-label"):
                        with gr.Accordion("Policy Model", open=True, elem_classes="accordion-label"):
                            prediction = gr.Markdown("", elem_classes="markdown-text-tiny")
                            prediction.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
                    
                    with gr.Column():
                        # with gr.Accordion("๐Ÿ”‘ Ground-Truth Answer", open=True, elem_classes="accordion-label"):
                        with gr.Accordion("Revision Model", open=True, elem_classes="accordion-label"):
                            gold_answer = gr.HTML("", elem_id="markdown-text-tiny")
                            gold_answer.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)

                    with gr.Column(visible=True):
                        with gr.Accordion("Feedback Model", open=True, elem_classes="accordion-label"):
                            correctness = gr.HTML("", elem_id="markdown-text-tiny")
                            correctness.change(lambda x: x, inputs=[], outputs=[], scroll_to_output=False, js=js_code)
                
                # Display chat history when button is clicked
                btn_show_history.click(fn=display_chat_history, 
                                       inputs=[task_category, task_difficulty, task_quality, feedback_score],
                                       outputs=[task, Chatbot_Common_Plan, Chatbot_Common_Ground, task_metadata, prediction, gold_answer, correctness, image, highlighted_diff])

            with gr.TabItem("๐Ÿ“ฎ About Us", elem_id="od-benchmark-tab-table", id=3, visible=False):
                gr.Markdown(ABOUT_MD, elem_classes="markdown-text")
        gr.Markdown(f"Last updated on **{LAST_UPDATED}**", elem_classes="markdown-text-small")
        
        with gr.Row():
            with gr.Accordion("๐Ÿ“™ Citation", open=False, elem_classes="accordion-label", visible=False):
                gr.Textbox(
                    value=CITATION_TEXT, 
                    lines=7,
                    label="Copy the BibTeX snippet to cite this source",
                    elem_id="citation-button",
                    show_copy_button=True)
                # ).style(show_copy_button=True)

    return demo



if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--result_file", help="Path to results table", default="data_dir/pair_feedbacks_1.jsonl")
    parser.add_argument("--length_balation_file", help="Path to results table", default="data_dir/elo_ranks.length_ablation.all.jsonl")
    parser.add_argument("--skip_empty_result_file", help="Path to results table", default="data_dir/elo_ranks.skip_empty.all.jsonl")
    parser.add_argument("--skip_empty_length_balation_file", help="Path to results table", default="data_dir/elo_ranks.skip_empty.length_ablation.all.jsonl")
    args = parser.parse_args()

    LAST_UPDATED = datetime.fromtimestamp(Path(args.result_file).stat().st_mtime, tz=timezone.utc).strftime("%Y-%m-%d %H:%M:%S")
    
    # available_models = sorted(list(set(list(original_df["model name "])))) 
    # available_models = list(model_info.keys())

    # dataset = datasets.Dataset.from_json(args.result_file)
    dataset = datasets.load_dataset("DongfuJiang/VAPO", "pair_feedback_iter_1", split='train')
    
    avaliable_difficulty = sorted(list(set(dataset['difficulty'])))
    avaliable_quality = sorted(list(set(dataset['quality'])))
    available_feedback_scores = sorted(list(set([item['feedback']['processed']['score'] for item in dataset])))
    available_categories = sorted(list(set(dataset['category'])))
    

    TYPES = ["markdown", "number"]

    demo = build_demo(TYPES)
    demo.launch(share=args.share, allowed_paths=["."], height=1000)