2Much2Code:)
commit
efc8d6d
raw
history blame
1.18 kB
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
import tensorflow.keras as keras
import keras.applications.xception as xception
from tensorflow.keras.models import load_model
# load model
model = load_model('model12.h5')
classnames = ['battery','biological','brown-glass','cardboard','clothes','green-glass','metal','paper','plastic','shoes','trash','white-glass']
def predict_image(img):
img_4d=img.reshape(-1,320, 320,3)
prediction=model.predict(img_4d)[0]
return {classnames[i]: float(prediction[i]) for i in range(12)}
image = gr.inputs.Image(shape=(320, 320))
label = gr.outputs.Label(num_top_classes=3)
enable_queue=True
examples = ['battery.jpg','cardboard.jpeg','clothes.jpeg','glass.jpg','metal.jpg','plastic.jpg','shoes.jpg']
article="<p style='text-align: center'>Made by Aditya Narendra with 🖤</p>"
gr.Interface(fn=predict_image, inputs=image, title="Garbage Classifier",
description="This is a Garbage Classification Model Trained using Xception Net.Deployed to Hugging Faces using Gradio.",outputs=label,article=article,enable_queue=enable_queue,examples=examples,interpretation='default').launch(share="True")