Spaces:
Runtime error
Runtime error
File size: 1,183 Bytes
efc8d6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
import tensorflow.keras as keras
import keras.applications.xception as xception
from tensorflow.keras.models import load_model
# load model
model = load_model('model12.h5')
classnames = ['battery','biological','brown-glass','cardboard','clothes','green-glass','metal','paper','plastic','shoes','trash','white-glass']
def predict_image(img):
img_4d=img.reshape(-1,320, 320,3)
prediction=model.predict(img_4d)[0]
return {classnames[i]: float(prediction[i]) for i in range(12)}
image = gr.inputs.Image(shape=(320, 320))
label = gr.outputs.Label(num_top_classes=3)
enable_queue=True
examples = ['battery.jpg','cardboard.jpeg','clothes.jpeg','glass.jpg','metal.jpg','plastic.jpg','shoes.jpg']
article="<p style='text-align: center'>Made by Aditya Narendra with 🖤</p>"
gr.Interface(fn=predict_image, inputs=image, title="Garbage Classifier",
description="This is a Garbage Classification Model Trained using Xception Net.Deployed to Hugging Faces using Gradio.",outputs=label,article=article,enable_queue=enable_queue,examples=examples,interpretation='default').launch(share="True") |