|
import streamlit as st |
|
from langchain_community.vectorstores import FAISS, Chroma, Pinecone |
|
from langchain_community.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain_community.document_loaders import TextLoader, PyPDFLoader |
|
import tempfile |
|
import os |
|
import torch |
|
|
|
|
|
if 'vectorstore' not in st.session_state: |
|
st.session_state.vectorstore = None |
|
if 'documents' not in st.session_state: |
|
st.session_state.documents = None |
|
|
|
st.set_page_config(page_title="ποΈ Vector Store Explorer", layout="wide") |
|
st.title("ποΈ Vector Store Explorer") |
|
st.markdown(""" |
|
Explore different vector stores and embeddings in LangChain. Upload documents, create embeddings, |
|
and perform semantic search! |
|
""") |
|
|
|
|
|
main_tab1, main_tab2, main_tab3 = st.tabs(["π Document Processing", "π Vector Store Operations", "π Learning Center"]) |
|
|
|
with main_tab1: |
|
col1, col2 = st.columns([1, 1]) |
|
|
|
with col1: |
|
st.header("Document Upload") |
|
file_type = st.selectbox("Select File Type", ["Text", "PDF"]) |
|
uploaded_file = st.file_uploader( |
|
"Upload your document", |
|
type=["txt", "pdf"], |
|
help="Upload a document to create vector embeddings" |
|
) |
|
|
|
if uploaded_file: |
|
try: |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file_type.lower()}") as tmp_file: |
|
tmp_file.write(uploaded_file.getvalue()) |
|
tmp_file_path = tmp_file.name |
|
|
|
loader = TextLoader(tmp_file_path) if file_type == "Text" else PyPDFLoader(tmp_file_path) |
|
st.session_state.documents = loader.load() |
|
st.success("Document loaded successfully!") |
|
|
|
|
|
os.unlink(tmp_file_path) |
|
except Exception as e: |
|
st.error(f"Error loading document: {str(e)}") |
|
|
|
with col2: |
|
st.header("Text Processing") |
|
if st.session_state.documents: |
|
chunk_size = st.slider("Chunk Size", 100, 2000, 500) |
|
chunk_overlap = st.slider("Chunk Overlap", 0, 200, 50) |
|
|
|
if st.button("Process Text"): |
|
text_splitter = CharacterTextSplitter( |
|
chunk_size=chunk_size, |
|
chunk_overlap=chunk_overlap |
|
) |
|
st.session_state.splits = text_splitter.split_documents(st.session_state.documents) |
|
st.success(f"Created {len(st.session_state.splits)} text chunks!") |
|
|
|
with st.expander("Preview Chunks"): |
|
for i, chunk in enumerate(st.session_state.splits[:3]): |
|
st.markdown(f"**Chunk {i+1}**") |
|
st.write(chunk.page_content) |
|
st.markdown("---") |
|
|
|
with main_tab2: |
|
if 'splits' in st.session_state: |
|
col1, col2 = st.columns([1, 1]) |
|
|
|
with col1: |
|
st.header("Vector Store Configuration") |
|
|
|
vectorstore_type = st.selectbox( |
|
"Select Vector Store", |
|
["FAISS", "Chroma"], |
|
help="Choose the vector store implementation" |
|
) |
|
|
|
embedding_type = st.selectbox( |
|
"Select Embeddings", |
|
["OpenAI", "HuggingFace"], |
|
help="Choose the embedding model" |
|
) |
|
|
|
if embedding_type == "OpenAI": |
|
api_key = st.text_input("OpenAI API Key", type="password") |
|
if api_key: |
|
os.environ["OPENAI_API_KEY"] = api_key |
|
embeddings = OpenAIEmbeddings() |
|
else: |
|
model_name = st.selectbox( |
|
"Select HuggingFace Model", |
|
["sentence-transformers/all-mpnet-base-v2", |
|
"sentence-transformers/all-MiniLM-L6-v2"] |
|
) |
|
embeddings = HuggingFaceEmbeddings(model_name=model_name) |
|
|
|
if st.button("Create Vector Store"): |
|
try: |
|
with st.spinner("Creating vector store..."): |
|
if vectorstore_type == "FAISS": |
|
st.session_state.vectorstore = FAISS.from_documents( |
|
st.session_state.splits, |
|
embeddings |
|
) |
|
else: |
|
st.session_state.vectorstore = Chroma.from_documents( |
|
st.session_state.splits, |
|
embeddings |
|
) |
|
st.success("Vector store created successfully!") |
|
except Exception as e: |
|
st.error(f"Error creating vector store: {str(e)}") |
|
|
|
with col2: |
|
st.header("Semantic Search") |
|
if st.session_state.vectorstore: |
|
query = st.text_input("Enter your search query") |
|
k = st.slider("Number of results", 1, 10, 3) |
|
|
|
if query: |
|
with st.spinner("Searching..."): |
|
results = st.session_state.vectorstore.similarity_search(query, k=k) |
|
|
|
st.subheader("Search Results") |
|
for i, doc in enumerate(results): |
|
with st.expander(f"Result {i+1}"): |
|
st.write(doc.page_content) |
|
st.markdown("**Metadata:**") |
|
st.json(doc.metadata) |
|
|
|
with main_tab3: |
|
learn_tab1, learn_tab2, learn_tab3 = st.tabs(["Vector Stores", "Embeddings", "Best Practices"]) |
|
|
|
with learn_tab1: |
|
st.markdown(""" |
|
### What are Vector Stores? |
|
|
|
Vector stores are specialized databases that store and retrieve vector embeddings efficiently. They enable: |
|
- Semantic search capabilities |
|
- Similarity matching |
|
- Efficient nearest neighbor search |
|
|
|
### Available Vector Stores |
|
| Store | Description | Best For | |
|
|-------|-------------|----------| |
|
| FAISS | In-memory, efficient similarity search | Local development, small-medium datasets | |
|
| Chroma | Simple, persistent vector store | Local development, getting started | |
|
| Pinecone | Managed vector database service | Production, large-scale deployments | |
|
""") |
|
|
|
with learn_tab2: |
|
st.markdown(""" |
|
### Understanding Embeddings |
|
|
|
Embeddings are numerical representations of text that capture semantic meaning. They: |
|
- Convert text to dense vectors |
|
- Enable semantic similarity comparison |
|
- Form the basis for vector search |
|
|
|
### Embedding Models |
|
- **OpenAI**: High quality, but requires API key and costs money |
|
- **HuggingFace**: Free, open-source alternatives |
|
- all-mpnet-base-v2: High quality, slower |
|
- all-MiniLM-L6-v2: Good quality, faster |
|
""") |
|
|
|
with learn_tab3: |
|
st.markdown(""" |
|
### Vector Store Best Practices |
|
|
|
1. **Chunk Size Selection** |
|
- Smaller chunks for precise retrieval |
|
- Larger chunks for more context |
|
|
|
2. **Embedding Model Selection** |
|
- Consider cost vs. quality tradeoff |
|
- Test different models for your use case |
|
|
|
3. **Performance Optimization** |
|
- Use appropriate batch sizes |
|
- Consider hardware limitations |
|
- Monitor memory usage |
|
|
|
4. **Search Optimization** |
|
- Experiment with different k values |
|
- Use metadata filtering when available |
|
- Consider hybrid search approaches |
|
""") |
|
|
|
|
|
st.sidebar.header("π Instructions") |
|
st.sidebar.markdown(""" |
|
1. **Upload Document** |
|
- Select file type |
|
- Upload your document |
|
- Process into chunks |
|
|
|
2. **Create Vector Store** |
|
- Choose vector store type |
|
- Select embedding model |
|
- Configure settings |
|
|
|
3. **Search** |
|
- Enter search query |
|
- Adjust number of results |
|
- Explore similar documents |
|
""") |
|
|