DexterSptizu
commited on
Commit
β’
aacc0d9
1
Parent(s):
5eadd9a
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain_community.vectorstores import FAISS, Chroma, Pinecone
|
3 |
+
from langchain_community.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain_community.document_loaders import TextLoader, PyPDFLoader
|
6 |
+
import tempfile
|
7 |
+
import os
|
8 |
+
import torch
|
9 |
+
|
10 |
+
# Initialize session state variables
|
11 |
+
if 'vectorstore' not in st.session_state:
|
12 |
+
st.session_state.vectorstore = None
|
13 |
+
if 'documents' not in st.session_state:
|
14 |
+
st.session_state.documents = None
|
15 |
+
|
16 |
+
st.set_page_config(page_title="ποΈ Vector Store Explorer", layout="wide")
|
17 |
+
st.title("ποΈ Vector Store Explorer")
|
18 |
+
st.markdown("""
|
19 |
+
Explore different vector stores and embeddings in LangChain. Upload documents, create embeddings,
|
20 |
+
and perform semantic search!
|
21 |
+
""")
|
22 |
+
|
23 |
+
# Main tabs
|
24 |
+
main_tab1, main_tab2, main_tab3 = st.tabs(["π Document Processing", "π Vector Store Operations", "π Learning Center"])
|
25 |
+
|
26 |
+
with main_tab1:
|
27 |
+
col1, col2 = st.columns([1, 1])
|
28 |
+
|
29 |
+
with col1:
|
30 |
+
st.header("Document Upload")
|
31 |
+
file_type = st.selectbox("Select File Type", ["Text", "PDF"])
|
32 |
+
uploaded_file = st.file_uploader(
|
33 |
+
"Upload your document",
|
34 |
+
type=["txt", "pdf"],
|
35 |
+
help="Upload a document to create vector embeddings"
|
36 |
+
)
|
37 |
+
|
38 |
+
if uploaded_file:
|
39 |
+
try:
|
40 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{file_type.lower()}") as tmp_file:
|
41 |
+
tmp_file.write(uploaded_file.getvalue())
|
42 |
+
tmp_file_path = tmp_file.name
|
43 |
+
|
44 |
+
loader = TextLoader(tmp_file_path) if file_type == "Text" else PyPDFLoader(tmp_file_path)
|
45 |
+
st.session_state.documents = loader.load()
|
46 |
+
st.success("Document loaded successfully!")
|
47 |
+
|
48 |
+
# Clean up temp file
|
49 |
+
os.unlink(tmp_file_path)
|
50 |
+
except Exception as e:
|
51 |
+
st.error(f"Error loading document: {str(e)}")
|
52 |
+
|
53 |
+
with col2:
|
54 |
+
st.header("Text Processing")
|
55 |
+
if st.session_state.documents:
|
56 |
+
chunk_size = st.slider("Chunk Size", 100, 2000, 500)
|
57 |
+
chunk_overlap = st.slider("Chunk Overlap", 0, 200, 50)
|
58 |
+
|
59 |
+
if st.button("Process Text"):
|
60 |
+
text_splitter = CharacterTextSplitter(
|
61 |
+
chunk_size=chunk_size,
|
62 |
+
chunk_overlap=chunk_overlap
|
63 |
+
)
|
64 |
+
st.session_state.splits = text_splitter.split_documents(st.session_state.documents)
|
65 |
+
st.success(f"Created {len(st.session_state.splits)} text chunks!")
|
66 |
+
|
67 |
+
with st.expander("Preview Chunks"):
|
68 |
+
for i, chunk in enumerate(st.session_state.splits[:3]):
|
69 |
+
st.markdown(f"**Chunk {i+1}**")
|
70 |
+
st.write(chunk.page_content)
|
71 |
+
st.markdown("---")
|
72 |
+
|
73 |
+
with main_tab2:
|
74 |
+
if 'splits' in st.session_state:
|
75 |
+
col1, col2 = st.columns([1, 1])
|
76 |
+
|
77 |
+
with col1:
|
78 |
+
st.header("Vector Store Configuration")
|
79 |
+
|
80 |
+
vectorstore_type = st.selectbox(
|
81 |
+
"Select Vector Store",
|
82 |
+
["FAISS", "Chroma"],
|
83 |
+
help="Choose the vector store implementation"
|
84 |
+
)
|
85 |
+
|
86 |
+
embedding_type = st.selectbox(
|
87 |
+
"Select Embeddings",
|
88 |
+
["OpenAI", "HuggingFace"],
|
89 |
+
help="Choose the embedding model"
|
90 |
+
)
|
91 |
+
|
92 |
+
if embedding_type == "OpenAI":
|
93 |
+
api_key = st.text_input("OpenAI API Key", type="password")
|
94 |
+
if api_key:
|
95 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
96 |
+
embeddings = OpenAIEmbeddings()
|
97 |
+
else:
|
98 |
+
model_name = st.selectbox(
|
99 |
+
"Select HuggingFace Model",
|
100 |
+
["sentence-transformers/all-mpnet-base-v2",
|
101 |
+
"sentence-transformers/all-MiniLM-L6-v2"]
|
102 |
+
)
|
103 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
104 |
+
|
105 |
+
if st.button("Create Vector Store"):
|
106 |
+
try:
|
107 |
+
with st.spinner("Creating vector store..."):
|
108 |
+
if vectorstore_type == "FAISS":
|
109 |
+
st.session_state.vectorstore = FAISS.from_documents(
|
110 |
+
st.session_state.splits,
|
111 |
+
embeddings
|
112 |
+
)
|
113 |
+
else:
|
114 |
+
st.session_state.vectorstore = Chroma.from_documents(
|
115 |
+
st.session_state.splits,
|
116 |
+
embeddings
|
117 |
+
)
|
118 |
+
st.success("Vector store created successfully!")
|
119 |
+
except Exception as e:
|
120 |
+
st.error(f"Error creating vector store: {str(e)}")
|
121 |
+
|
122 |
+
with col2:
|
123 |
+
st.header("Semantic Search")
|
124 |
+
if st.session_state.vectorstore:
|
125 |
+
query = st.text_input("Enter your search query")
|
126 |
+
k = st.slider("Number of results", 1, 10, 3)
|
127 |
+
|
128 |
+
if query:
|
129 |
+
with st.spinner("Searching..."):
|
130 |
+
results = st.session_state.vectorstore.similarity_search(query, k=k)
|
131 |
+
|
132 |
+
st.subheader("Search Results")
|
133 |
+
for i, doc in enumerate(results):
|
134 |
+
with st.expander(f"Result {i+1}"):
|
135 |
+
st.write(doc.page_content)
|
136 |
+
st.markdown("**Metadata:**")
|
137 |
+
st.json(doc.metadata)
|
138 |
+
|
139 |
+
with main_tab3:
|
140 |
+
learn_tab1, learn_tab2, learn_tab3 = st.tabs(["Vector Stores", "Embeddings", "Best Practices"])
|
141 |
+
|
142 |
+
with learn_tab1:
|
143 |
+
st.markdown("""
|
144 |
+
### What are Vector Stores?
|
145 |
+
|
146 |
+
Vector stores are specialized databases that store and retrieve vector embeddings efficiently. They enable:
|
147 |
+
- Semantic search capabilities
|
148 |
+
- Similarity matching
|
149 |
+
- Efficient nearest neighbor search
|
150 |
+
|
151 |
+
### Available Vector Stores
|
152 |
+
| Store | Description | Best For |
|
153 |
+
|-------|-------------|----------|
|
154 |
+
| FAISS | In-memory, efficient similarity search | Local development, small-medium datasets |
|
155 |
+
| Chroma | Simple, persistent vector store | Local development, getting started |
|
156 |
+
| Pinecone | Managed vector database service | Production, large-scale deployments |
|
157 |
+
""")
|
158 |
+
|
159 |
+
with learn_tab2:
|
160 |
+
st.markdown("""
|
161 |
+
### Understanding Embeddings
|
162 |
+
|
163 |
+
Embeddings are numerical representations of text that capture semantic meaning. They:
|
164 |
+
- Convert text to dense vectors
|
165 |
+
- Enable semantic similarity comparison
|
166 |
+
- Form the basis for vector search
|
167 |
+
|
168 |
+
### Embedding Models
|
169 |
+
- **OpenAI**: High quality, but requires API key and costs money
|
170 |
+
- **HuggingFace**: Free, open-source alternatives
|
171 |
+
- all-mpnet-base-v2: High quality, slower
|
172 |
+
- all-MiniLM-L6-v2: Good quality, faster
|
173 |
+
""")
|
174 |
+
|
175 |
+
with learn_tab3:
|
176 |
+
st.markdown("""
|
177 |
+
### Vector Store Best Practices
|
178 |
+
|
179 |
+
1. **Chunk Size Selection**
|
180 |
+
- Smaller chunks for precise retrieval
|
181 |
+
- Larger chunks for more context
|
182 |
+
|
183 |
+
2. **Embedding Model Selection**
|
184 |
+
- Consider cost vs. quality tradeoff
|
185 |
+
- Test different models for your use case
|
186 |
+
|
187 |
+
3. **Performance Optimization**
|
188 |
+
- Use appropriate batch sizes
|
189 |
+
- Consider hardware limitations
|
190 |
+
- Monitor memory usage
|
191 |
+
|
192 |
+
4. **Search Optimization**
|
193 |
+
- Experiment with different k values
|
194 |
+
- Use metadata filtering when available
|
195 |
+
- Consider hybrid search approaches
|
196 |
+
""")
|
197 |
+
|
198 |
+
# Sidebar
|
199 |
+
st.sidebar.header("π Instructions")
|
200 |
+
st.sidebar.markdown("""
|
201 |
+
1. **Upload Document**
|
202 |
+
- Select file type
|
203 |
+
- Upload your document
|
204 |
+
- Process into chunks
|
205 |
+
|
206 |
+
2. **Create Vector Store**
|
207 |
+
- Choose vector store type
|
208 |
+
- Select embedding model
|
209 |
+
- Configure settings
|
210 |
+
|
211 |
+
3. **Search**
|
212 |
+
- Enter search query
|
213 |
+
- Adjust number of results
|
214 |
+
- Explore similar documents
|
215 |
+
""")
|