mwmathis's picture
Update viz_utils.py
4bc0386
raw
history blame
6.59 kB
import json
import numpy as np
from matplotlib import cm
import matplotlib
from PIL import Image, ImageColor, ImageFont, ImageDraw
import numpy as np
import pdb
from datetime import date
today = date.today()
#########################################
# Draw keypoints on image
def draw_keypoints_on_image(image,
keypoints,
map_label_id_to_str,
flag_show_str_labels,
use_normalized_coordinates=True,
font_size=8,
keypt_color="#ff0000",
marker_size=2,
):
"""Draws keypoints on an image.
Modified from:
https://www.programcreek.com/python/?code=fjchange%2Fobject_centric_VAD%2Fobject_centric_VAD-master%2Fobject_detection%2Futils%2Fvisualization_utils.py
Args:
image: a PIL.Image object.
keypoints: a numpy array with shape [num_keypoints, 2].
map_label_id_to_str: dict with keys=label number and values= label string
flag_show_str_labels: boolean to select whether or not to show string labels
color: color to draw the keypoints with. Default is red.
radius: keypoint radius. Default value is 2.
use_normalized_coordinates: if True (default), treat keypoint values as
relative to the image. Otherwise treat them as absolute.
"""
# get a drawing context
draw = ImageDraw.Draw(image,"RGBA")
im_width, im_height = image.size
keypoints_x = [k[0] for k in keypoints]
keypoints_y = [k[1] for k in keypoints]
alpha = [k[2] for k in keypoints]
norm = matplotlib.colors.Normalize(vmin=0, vmax=255)
names_for_color = [i for i in map_label_id_to_str.keys()]
colores = np.linspace(0, 255, num=len(names_for_color),dtype= int)
# adjust keypoints coords if required
if use_normalized_coordinates:
keypoints_x = tuple([im_width * x for x in keypoints_x])
keypoints_y = tuple([im_height * y for y in keypoints_y])
#cmap = matplotlib.cm.get_cmap('hsv')
cmap2 = matplotlib.cm.get_cmap('Greys')
# draw ellipses around keypoints
for i, (keypoint_x, keypoint_y) in enumerate(zip(keypoints_x, keypoints_y)):
round_fill = list(cm.viridis(norm(colores[i]),bytes=True))#[round(num*255) for num in list(cmap(i))[:3]] #check!
if np.isnan(alpha[i]) == False :
round_fill[3] = round(alpha[i] *255)
#print(round_fill)
#round_outline = [round(num*255) for num in list(cmap2(alpha[i]))[:3]]
draw.ellipse([(keypoint_x - marker_size, keypoint_y - marker_size),
(keypoint_x + marker_size, keypoint_y + marker_size)],
fill=tuple(round_fill), outline= 'black', width=1) #fill and outline: [0,255]
# add string labels around keypoints
if flag_show_str_labels:
draw.text((keypoint_x + marker_size, keypoint_y + marker_size),#(0.5*im_width, 0.5*im_height), #-------
map_label_id_to_str[i],
ImageColor.getcolor(keypt_color, "RGB") # rgb #
)
#########################################
# Draw bboxes on image
def draw_bbox_w_text(img,
results,
font_size=8): #TODO: select color too?
#pdb.set_trace()
bbxyxy = results
w, h = bbxyxy[2], bbxyxy[3]
shape = [(bbxyxy[0], bbxyxy[1]), (w , h)]
imgR = ImageDraw.Draw(img)
imgR.rectangle(shape, outline ="red",width=5) ##bb for animal
confidence = bbxyxy[4]
string_bb = 'animal ' + str(round(confidence, 2))
text_size = font.getsize(string_bb) # (h,w)
position = (bbxyxy[0],bbxyxy[1] - text_size[1] -2 )
left, top, right, bottom = imgR.textbbox(position, string_bb, font=font)
imgR.rectangle((left, top-5, right+5, bottom+5), fill="red")
imgR.text((bbxyxy[0] + 3 ,bbxyxy[1] - text_size[1] -2 ), string_bb, font=font, fill="black")
return imgR
###########################################
def save_results_as_json(md_results, dlc_outputs, map_dlc_label_id_to_str, thr,model,mega_model_input, path_to_output_file = 'download_predictions.json'):
"""
Output detections as json file
"""
# initialise dict to save to json
info = {}
info['date'] = str(today)
info['MD_model'] = str(mega_model_input)
# info from megaDetector
info['file']= md_results.files[0]
number_bb = len(md_results.xyxy[0].tolist())
info['number_of_bb'] = number_bb
# info from DLC
number_bb_thr = len(dlc_outputs)
labels = [n for n in map_dlc_label_id_to_str.values()]
# create list of bboxes above th
new_index = []
for i in range(number_bb):
corner_x1,corner_y1,corner_x2,corner_y2,confidence, _ = md_results.xyxy[0].tolist()[i]
if confidence > thr:
new_index.append(i)
# define aux dict for every bounding box above threshold
for i in range(number_bb_thr):
aux={}
# MD output
corner_x1,corner_y1,corner_x2,corner_y2,confidence, _ = md_results.xyxy[0].tolist()[new_index[i]]
aux['corner_1'] = (corner_x1,corner_y1)
aux['corner_2'] = (corner_x2,corner_y2)
aux['predict MD'] = md_results.names[0]
aux['confidence MD'] = confidence
# DLC output
info['dlc_model'] = model
kypts = []
for s in dlc_outputs[i]:
aux1 = []
for j in s:
aux1.append(float(j))
kypts.append(aux1)
aux['dlc_pred'] = dict(zip(labels,kypts))
info['bb_' + str(new_index[i]) ]=aux
# save dict as json
with open(path_to_output_file, 'w') as f:
json.dump(info, f, indent=1)
print('Output file saved at {}'.format(path_to_output_file))
return path_to_output_file
def save_results_only_dlc(dlc_outputs,map_label_id_to_str,model,output_file = 'dowload_predictions_dlc.json'):
"""
write json dlc output
"""
info = {}
info['date'] = str(today)
labels = [n for n in map_label_id_to_str.values()]
info['dlc_model'] = model
kypts = []
for s in dlc_outputs:
aux1 = []
for j in s:
aux1.append(float(j))
kypts.append(aux1)
info['dlc_pred'] = dict(zip(labels,kypts))
with open(output_file, 'w') as f:
json.dump(info, f, indent=1)
print('Output file saved at {}'.format(output_file))
return output_file
###########################################