File size: 6,586 Bytes
7206ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc0386
 
7206ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import json 
import numpy as np

from matplotlib import cm
import matplotlib
from PIL import Image, ImageColor, ImageFont, ImageDraw 
import numpy as np
import pdb
from datetime import date
today = date.today()

#########################################
#  Draw keypoints on image
def draw_keypoints_on_image(image,
                            keypoints,
                            map_label_id_to_str,
                            flag_show_str_labels,
                            use_normalized_coordinates=True,                           
                            font_size=8,
                            keypt_color="#ff0000",
                            marker_size=2,
                            ):
    """Draws keypoints on an image.
    Modified from:
        https://www.programcreek.com/python/?code=fjchange%2Fobject_centric_VAD%2Fobject_centric_VAD-master%2Fobject_detection%2Futils%2Fvisualization_utils.py
    Args:
    image: a PIL.Image object.
    keypoints: a numpy array with shape [num_keypoints, 2].
    map_label_id_to_str: dict with keys=label number and values= label string
    flag_show_str_labels: boolean to select whether or not to show string labels
    color: color to draw the keypoints with. Default is red.
    radius: keypoint radius. Default value is 2.
    use_normalized_coordinates: if True (default), treat keypoint values as
        relative to the image.  Otherwise treat them as absolute.

    
    """
    # get a drawing context
    draw = ImageDraw.Draw(image,"RGBA")  

    im_width, im_height = image.size
    keypoints_x = [k[0] for k in keypoints]
    keypoints_y = [k[1] for k in keypoints]
    alpha = [k[2] for k in keypoints]
    norm = matplotlib.colors.Normalize(vmin=0, vmax=255)

    names_for_color = [i for i in map_label_id_to_str.keys()]
    colores = np.linspace(0, 255, num=len(names_for_color),dtype= int)

    # adjust keypoints coords if required
    if use_normalized_coordinates:
        keypoints_x = tuple([im_width * x for x in keypoints_x])
        keypoints_y = tuple([im_height * y for y in keypoints_y])
    
    #cmap = matplotlib.cm.get_cmap('hsv')
    cmap2 = matplotlib.cm.get_cmap('Greys')
    # draw ellipses around keypoints
    for i, (keypoint_x, keypoint_y) in enumerate(zip(keypoints_x, keypoints_y)):
        round_fill = list(cm.viridis(norm(colores[i]),bytes=True))#[round(num*255) for num in list(cmap(i))[:3]] #check!
        if np.isnan(alpha[i]) == False : 
            round_fill[3] = round(alpha[i] *255)
        #print(round_fill)
        #round_outline = [round(num*255) for num in list(cmap2(alpha[i]))[:3]]
        draw.ellipse([(keypoint_x - marker_size, keypoint_y - marker_size),
                      (keypoint_x + marker_size, keypoint_y + marker_size)],
                       fill=tuple(round_fill), outline= 'black', width=1) #fill and outline: [0,255]

        # add string labels around keypoints
        if flag_show_str_labels:
            draw.text((keypoint_x + marker_size, keypoint_y + marker_size),#(0.5*im_width, 0.5*im_height), #-------
                      map_label_id_to_str[i],
                      ImageColor.getcolor(keypt_color, "RGB") # rgb #
                      )

#########################################
#  Draw bboxes on image
def draw_bbox_w_text(img,
                     results,
                     font_size=8): #TODO: select color too?
    #pdb.set_trace()
    bbxyxy = results
    w, h = bbxyxy[2], bbxyxy[3]
    shape = [(bbxyxy[0], bbxyxy[1]), (w , h)]
    imgR = ImageDraw.Draw(img)  
    imgR.rectangle(shape,  outline ="red",width=5) ##bb for animal

    confidence = bbxyxy[4]
    string_bb = 'animal ' + str(round(confidence, 2))

    text_size = font.getsize(string_bb) # (h,w)
    position = (bbxyxy[0],bbxyxy[1] - text_size[1] -2 )
    left, top, right, bottom = imgR.textbbox(position, string_bb, font=font)
    imgR.rectangle((left, top-5, right+5, bottom+5), fill="red")
    imgR.text((bbxyxy[0] + 3 ,bbxyxy[1] - text_size[1] -2 ), string_bb, font=font, fill="black")

    return imgR

###########################################
def save_results_as_json(md_results, dlc_outputs, map_dlc_label_id_to_str, thr,model,mega_model_input, path_to_output_file = 'download_predictions.json'):

    """
    Output detections as json file

    """
    # initialise dict to save to json
    info = {}
    info['date'] = str(today)
    info['MD_model'] = str(mega_model_input)
    # info from megaDetector
    info['file']= md_results.files[0]
    number_bb = len(md_results.xyxy[0].tolist())
    info['number_of_bb'] = number_bb
    # info from DLC
    number_bb_thr = len(dlc_outputs)
    labels = [n for n in map_dlc_label_id_to_str.values()]
    
    # create list of bboxes above th
    new_index = []
    for i in range(number_bb):
        corner_x1,corner_y1,corner_x2,corner_y2,confidence, _ =  md_results.xyxy[0].tolist()[i]

        if confidence > thr:
            new_index.append(i)

    # define aux dict for every bounding box above threshold
    for i in range(number_bb_thr):
        aux={}
        # MD output
        corner_x1,corner_y1,corner_x2,corner_y2,confidence, _ =  md_results.xyxy[0].tolist()[new_index[i]]
        aux['corner_1'] = (corner_x1,corner_y1)
        aux['corner_2'] = (corner_x2,corner_y2)
        aux['predict MD'] = md_results.names[0]
        aux['confidence MD'] = confidence
        
        # DLC output
        info['dlc_model'] = model
        kypts = []
        for s in dlc_outputs[i]:
            aux1 = []
            for j in s:
                aux1.append(float(j))

            kypts.append(aux1)
        aux['dlc_pred']  = dict(zip(labels,kypts))
        info['bb_' + str(new_index[i]) ]=aux

    # save dict as json
    with open(path_to_output_file, 'w') as f:
        json.dump(info, f, indent=1)
        print('Output file saved at {}'.format(path_to_output_file))

    return path_to_output_file


def save_results_only_dlc(dlc_outputs,map_label_id_to_str,model,output_file = 'dowload_predictions_dlc.json'):

    """
    write json dlc output
    """
    info = {}
    info['date'] = str(today)
    labels = [n for n in map_label_id_to_str.values()]
    info['dlc_model'] = model
    kypts = []
    for s in dlc_outputs:
        aux1 = []
        for j in s:
            aux1.append(float(j))

        kypts.append(aux1)
    info['dlc_pred']  = dict(zip(labels,kypts))

    with open(output_file, 'w') as f:
        json.dump(info, f, indent=1)
        print('Output file saved at {}'.format(output_file))

    return output_file


###########################################