upload dashboard app
Browse files
app.py
CHANGED
@@ -1,47 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
from PIL import Image
|
4 |
-
import requests
|
5 |
-
|
6 |
import hopsworks
|
7 |
-
import joblib
|
8 |
|
9 |
project = hopsworks.login()
|
10 |
fs = project.get_feature_store()
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
fn=iris,
|
35 |
-
title="Iris Flower Predictive Analytics",
|
36 |
-
description="Experiment with sepal/petal lengths/widths to predict which flower it is.",
|
37 |
-
allow_flagging="never",
|
38 |
-
inputs=[
|
39 |
-
gr.inputs.Number(default=1.0, label="sepal length (cm)"),
|
40 |
-
gr.inputs.Number(default=1.0, label="sepal width (cm)"),
|
41 |
-
gr.inputs.Number(default=1.0, label="petal length (cm)"),
|
42 |
-
gr.inputs.Number(default=1.0, label="petal width (cm)"),
|
43 |
-
],
|
44 |
-
outputs=gr.Image(type="pil"))
|
45 |
|
46 |
demo.launch()
|
47 |
-
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from PIL import Image
|
|
|
|
|
3 |
import hopsworks
|
|
|
4 |
|
5 |
project = hopsworks.login()
|
6 |
fs = project.get_feature_store()
|
7 |
|
8 |
+
dataset_api = project.get_dataset_api()
|
9 |
+
|
10 |
+
dataset_api.download("Resources/images/latest_iris.png")
|
11 |
+
dataset_api.download("Resources/images/actual_iris.png")
|
12 |
+
dataset_api.download("Resources/images/df_recent.png")
|
13 |
+
dataset_api.download("Resources/images/confusion_matrix.png")
|
14 |
+
|
15 |
+
with gr.Blocks() as demo:
|
16 |
+
with gr.Row():
|
17 |
+
with gr.Column():
|
18 |
+
gr.Label("Today's Predicted Image")
|
19 |
+
input_img = gr.Image("latest_iris.png", elem_id="predicted-img")
|
20 |
+
with gr.Column():
|
21 |
+
gr.Label("Today's Actual Image")
|
22 |
+
input_img = gr.Image("actual_iris.png", elem_id="actual-img")
|
23 |
+
with gr.Row():
|
24 |
+
with gr.Column():
|
25 |
+
gr.Label("Recent Prediction History")
|
26 |
+
input_img = gr.Image("df_recent.png", elem_id="recent-predictions")
|
27 |
+
with gr.Column():
|
28 |
+
gr.Label("Confusion Maxtrix with Historical Prediction Performance")
|
29 |
+
input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
demo.launch()
|
|