Delete iris-training-pipeline.py
Browse files- iris-training-pipeline.py +0 -100
iris-training-pipeline.py
DELETED
@@ -1,100 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import modal
|
3 |
-
|
4 |
-
LOCAL=True
|
5 |
-
|
6 |
-
if LOCAL == False:
|
7 |
-
stub = modal.Stub()
|
8 |
-
image = modal.Image.debian_slim().apt_install(["libgomp1"]).pip_install(["hopsworks", "seaborn", "joblib", "scikit-learn"])
|
9 |
-
|
10 |
-
@stub.function(image=image, schedule=modal.Period(days=1), secret=modal.Secret.from_name("HOPSWORKS_API_KEY"))
|
11 |
-
def f():
|
12 |
-
g()
|
13 |
-
|
14 |
-
|
15 |
-
def g():
|
16 |
-
import hopsworks
|
17 |
-
import pandas as pd
|
18 |
-
from sklearn.neighbors import KNeighborsClassifier
|
19 |
-
from sklearn.metrics import accuracy_score
|
20 |
-
from sklearn.metrics import confusion_matrix
|
21 |
-
from sklearn.metrics import classification_report
|
22 |
-
import seaborn as sns
|
23 |
-
from matplotlib import pyplot
|
24 |
-
from hsml.schema import Schema
|
25 |
-
from hsml.model_schema import ModelSchema
|
26 |
-
import joblib
|
27 |
-
|
28 |
-
# You have to set the environment variable 'HOPSWORKS_API_KEY' for login to succeed
|
29 |
-
project = hopsworks.login()
|
30 |
-
# fs is a reference to the Hopsworks Feature Store
|
31 |
-
fs = project.get_feature_store()
|
32 |
-
|
33 |
-
# The feature view is the input set of features for your model. The features can come from different feature groups.
|
34 |
-
# You can select features from different feature groups and join them together to create a feature view
|
35 |
-
try:
|
36 |
-
feature_view = fs.get_feature_view(name="iris_modal", version=1)
|
37 |
-
except:
|
38 |
-
iris_fg = fs.get_feature_group(name="iris_modal", version=1)
|
39 |
-
query = iris_fg.select_all()
|
40 |
-
feature_view = fs.create_feature_view(name="iris_modal",
|
41 |
-
version=1,
|
42 |
-
description="Read from Iris flower dataset",
|
43 |
-
labels=["variety"],
|
44 |
-
query=query)
|
45 |
-
|
46 |
-
# You can read training data, randomly split into train/test sets of features (X) and labels (y)
|
47 |
-
X_train, X_test, y_train, y_test = feature_view.train_test_split(0.2)
|
48 |
-
|
49 |
-
# Train our model with the Scikit-learn K-nearest-neighbors algorithm using our features (X_train) and labels (y_train)
|
50 |
-
model = KNeighborsClassifier(n_neighbors=2)
|
51 |
-
model.fit(X_train, y_train.values.ravel())
|
52 |
-
|
53 |
-
# Evaluate model performance using the features from the test set (X_test)
|
54 |
-
y_pred = model.predict(X_test)
|
55 |
-
|
56 |
-
# Compare predictions (y_pred) with the labels in the test set (y_test)
|
57 |
-
metrics = classification_report(y_test, y_pred, output_dict=True)
|
58 |
-
results = confusion_matrix(y_test, y_pred)
|
59 |
-
|
60 |
-
# Create the confusion matrix as a figure, we will later store it as a PNG image file
|
61 |
-
df_cm = pd.DataFrame(results, ['True Setosa', 'True Versicolor', 'True Virginica'],
|
62 |
-
['Pred Setosa', 'Pred Versicolor', 'Pred Virginica'])
|
63 |
-
cm = sns.heatmap(df_cm, annot=True)
|
64 |
-
fig = cm.get_figure()
|
65 |
-
|
66 |
-
# We will now upload our model to the Hopsworks Model Registry. First get an object for the model registry.
|
67 |
-
mr = project.get_model_registry()
|
68 |
-
|
69 |
-
# The contents of the 'iris_model' directory will be saved to the model registry. Create the dir, first.
|
70 |
-
model_dir="iris_model"
|
71 |
-
if os.path.isdir(model_dir) == False:
|
72 |
-
os.mkdir(model_dir)
|
73 |
-
|
74 |
-
# Save both our model and the confusion matrix to 'model_dir', whose contents will be uploaded to the model registry
|
75 |
-
joblib.dump(model, model_dir + "/iris_model.pkl")
|
76 |
-
fig.savefig(model_dir + "/confusion_matrix.png")
|
77 |
-
|
78 |
-
|
79 |
-
# Specify the schema of the model's input/output using the features (X_train) and labels (y_train)
|
80 |
-
input_schema = Schema(X_train)
|
81 |
-
output_schema = Schema(y_train)
|
82 |
-
model_schema = ModelSchema(input_schema, output_schema)
|
83 |
-
|
84 |
-
# Create an entry in the model registry that includes the model's name, desc, metrics
|
85 |
-
iris_model = mr.python.create_model(
|
86 |
-
name="iris_modal",
|
87 |
-
metrics={"accuracy" : metrics['accuracy']},
|
88 |
-
model_schema=model_schema,
|
89 |
-
description="Iris Flower Predictor"
|
90 |
-
)
|
91 |
-
|
92 |
-
# Upload the model to the model registry, including all files in 'model_dir'
|
93 |
-
iris_model.save(model_dir)
|
94 |
-
|
95 |
-
if __name__ == "__main__":
|
96 |
-
if LOCAL == True :
|
97 |
-
g()
|
98 |
-
else:
|
99 |
-
with stub.run():
|
100 |
-
f()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|