File size: 1,955 Bytes
5b60a87
5527a29
9e3433c
 
 
 
 
 
 
 
 
b793725
 
 
 
9e3433c
b793725
 
 
 
9e3433c
b793725
9e3433c
33f79d4
9e3433c
 
 
93d9450
610065d
93d9450
9e3433c
6b10d1a
9e3433c
 
b793725
 
 
 
 
14ed4a6
9e3433c
14ed4a6
9e3433c
2f2e7ca
7984171
2f2e7ca
9e3433c
c2f3e10
14ed4a6
 
 
9e3433c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Define the BLOOM model name
model_name = "CreitinGameplays/bloom-3b-conversational"

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

def generate_text(user_prompt):
  """Generates text using the BLOOM model from Hugging Face Transformers and removes the user prompt."""
  # Construct the full prompt with system introduction, user prompt, and assistant role
  prompt = f"<|system|> You are a helpful AI assistant. </s> <|prompter|> {user_prompt} </s> <|assistant|>"

  # Encode the entire prompt into tokens
  prompt_encoded = tokenizer(prompt, return_tensors="pt").input_ids

  # Generate text with the complete prompt and limit the maximum length to 256 tokens
  output = model.generate(
      input_ids=prompt_encoded,
      max_length=256,
      num_beams=1,
      num_return_sequences=1,  # Generate only 1 sequence
      do_sample=True,  # Enable sampling for creativity
      top_k=50,  # Sample from the top 50 most likely tokens at each step
      top_p=0.15,  # Filter out highly probable unlikely continuations
      temperature=0.1,  # Control the randomness of the generated text (1.0 for default)
      repetition_penalty=1.165
  )

  # Decode the generated token sequence back to text
  generated_text = tokenizer.decode(output[0], skip_special_tokens=True)

  # Extract the assistant's response (assuming it starts with "<|assistant|>")
  assistant_response = generated_text.split("<|assistant|>")[-1]

  return assistant_response

# Define the Gradio interface
interface = gr.Interface(
  fn=generate_text,
  inputs=[
      gr.Textbox(label="Text Prompt", value="What's an AI?"),
  ],
  outputs="text",
  description="Interact with BLOOM-3b-conversational (Loaded with Hugging Face Transformers)",
)

# Launch the Gradio interface
interface.launch()