CreitinGameplays
commited on
Commit
•
b793725
1
Parent(s):
33f79d4
Update app.py
Browse files
app.py
CHANGED
@@ -9,14 +9,17 @@ model_name = "CreitinGameplays/bloom-3b-conversational"
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
|
12 |
-
def generate_text(
|
13 |
-
"""Generates text using the BLOOM model from Hugging Face Transformers."""
|
14 |
-
#
|
15 |
-
|
16 |
|
17 |
-
#
|
|
|
|
|
|
|
18 |
output = model.generate(
|
19 |
-
input_ids=
|
20 |
max_length=256,
|
21 |
num_beams=1,
|
22 |
num_return_sequences=1, # Generate only 1 sequence
|
@@ -29,7 +32,11 @@ def generate_text(prompt):
|
|
29 |
|
30 |
# Decode the generated token sequence back to text
|
31 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Define the Gradio interface
|
35 |
interface = gr.Interface(
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
|
12 |
+
def generate_text(user_prompt):
|
13 |
+
"""Generates text using the BLOOM model from Hugging Face Transformers and removes the user prompt."""
|
14 |
+
# Construct the full prompt with system introduction, user prompt, and assistant role
|
15 |
+
prompt = f"<|system|> You are a helpful AI assistant. </s> <|prompter|> {user_prompt} </s> <|assistant|>"
|
16 |
|
17 |
+
# Encode the entire prompt into tokens
|
18 |
+
prompt_encoded = tokenizer(prompt, return_tensors="pt").input_ids
|
19 |
+
|
20 |
+
# Generate text with the complete prompt and limit the maximum length to 256 tokens
|
21 |
output = model.generate(
|
22 |
+
input_ids=prompt_encoded,
|
23 |
max_length=256,
|
24 |
num_beams=1,
|
25 |
num_return_sequences=1, # Generate only 1 sequence
|
|
|
32 |
|
33 |
# Decode the generated token sequence back to text
|
34 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
35 |
+
|
36 |
+
# Extract the assistant's response (assuming it starts with "<|assistant|>")
|
37 |
+
assistant_response = generated_text.split("<|assistant|>")[-1]
|
38 |
+
|
39 |
+
return assistant_response
|
40 |
|
41 |
# Define the Gradio interface
|
42 |
interface = gr.Interface(
|