Spaces:
Runtime error
Runtime error
import os | |
import random | |
import uuid | |
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import spaces | |
import torch | |
from diffusers import ( | |
StableDiffusionXLPipeline, | |
KDPM2AncestralDiscreteScheduler, | |
AutoencoderKL | |
) | |
DESCRIPTION = """ | |
# Mobius | |
a diffusion model that pushes the boundaries of domain-agnostic debiasing and representation realignment. By employing a brand new constructive deconstruction framework, Mobius achieves unrivaled generalization across a vast array of styles and domains, eliminating the need for expensive pretraining from scratch. | |
Model by [Corcel.io](https://huggingface.co/Corcelio/mobius) | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo may not work on CPU.</p>" | |
MAX_SEED = np.iinfo(np.int32).max | |
USE_TORCH_COMPILE = 0 | |
ENABLE_CPU_OFFLOAD = 0 | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", | |
torch_dtype=torch.float16 | |
) | |
# Configure the pipeline | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"Corcelio/mobius", | |
vae=vae, | |
torch_dtype=torch.float16, | |
) | |
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.to('cuda') | |
def save_image(img): | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def generate( | |
prompt: str, | |
negative_prompt: str = "", | |
use_negative_prompt: bool = False, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 7, | |
randomize_seed: bool = False, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
pipe.to(device) | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
if not use_negative_prompt: | |
negative_prompt = "" # type: ignore | |
images = pipe( | |
prompt=f'''{prompt}''', | |
negative_prompt=f"{negative_prompt}", | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=50, | |
num_images_per_prompt=1, | |
output_type="pil", | |
clip_skip=3, | |
).images | |
image_paths = [save_image(img) for img in images] | |
print(image_paths) | |
return image_paths, seed | |
examples = [ | |
"a cat wearing sunglasses in the summer", | |
"mystery", | |
"an astronaut riding a horse on the moon", | |
"anime boy, protagonist,", | |
"A tiny robot taking a break under a tree in the garden", | |
"if I could turn back time" | |
] | |
css = ''' | |
.gradio-container{max-width: 560px !important} | |
h1{text-align:center} | |
footer { | |
visibility: hidden | |
} | |
''' | |
with gr.Blocks(title="Mobius", css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=False, | |
) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False) | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=6, | |
lines=4, | |
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:0.25)", | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
visible=True | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(visible=True): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=2048, | |
step=8, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=2048, | |
step=8, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.1, | |
maximum=20, | |
step=0.1, | |
value=3.5, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=[result, seed], | |
fn=generate, | |
cache_examples=False, | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, | |
run_button.click, | |
], | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
use_negative_prompt, | |
seed, | |
width, | |
height, | |
guidance_scale, | |
randomize_seed, | |
], | |
outputs=[result, seed], | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(show_api=False, debug=False) |