Spaces:
Runtime error
Runtime error
File size: 5,852 Bytes
4d699ee b89ad87 4d699ee b89ad87 4d699ee 8e39e50 2b02718 b89ad87 4d699ee b89ad87 4d699ee b89ad87 4d699ee b89ad87 4d699ee 1103a2c 4d699ee b89ad87 4d699ee 8e39e50 e7d4e05 4d699ee 2a059e9 4d699ee b89ad87 4d699ee b89ad87 4d699ee b89ad87 4d699ee b89ad87 4d699ee b89ad87 4d699ee b89ad87 4d699ee b89ad87 4d699ee b89ad87 4d699ee 2894b31 4d699ee b89ad87 4d699ee b89ad87 4d699ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import (
StableDiffusionXLPipeline,
KDPM2AncestralDiscreteScheduler,
AutoencoderKL
)
DESCRIPTION = """
# Mobius
a diffusion model that pushes the boundaries of domain-agnostic debiasing and representation realignment. By employing a brand new constructive deconstruction framework, Mobius achieves unrivaled generalization across a vast array of styles and domains, eliminating the need for expensive pretraining from scratch.
Model by [Corcel.io](https://huggingface.co/Corcelio/mobius)
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU π₯Ά This demo may not work on CPU.</p>"
MAX_SEED = np.iinfo(np.int32).max
USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=torch.float16
)
# Configure the pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
"Corcelio/mobius",
vae=vae,
torch_dtype=torch.float16,
)
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to('cuda')
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(enable_queue=True)
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 7,
randomize_seed: bool = False,
progress=gr.Progress(track_tqdm=True),
):
pipe.to(device)
seed = int(randomize_seed_fn(seed, randomize_seed))
if not use_negative_prompt:
negative_prompt = "" # type: ignore
images = pipe(
prompt=f'''{prompt}''',
negative_prompt=f"{negative_prompt}",
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=50,
num_images_per_prompt=1,
output_type="pil",
clip_skip=3,
).images
image_paths = [save_image(img) for img in images]
print(image_paths)
return image_paths, seed
examples = [
"a cat wearing sunglasses in the summer",
"mystery",
"an astronaut riding a horse on the moon",
"anime boy, protagonist,",
"A tiny robot taking a break under a tree in the garden",
"if I could turn back time"
]
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
with gr.Blocks(title="Mobius", css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=False,
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=6,
lines=4,
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:0.25)",
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20,
step=0.1,
value=3.5,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=False,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_api=False, debug=False) |