Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import requests | |
import os | |
url = "http://47.94.86.196:8084/chat_completion" | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
do_sample: bool, | |
seed: int, | |
max_new_tokens, | |
temperature, | |
top_p, | |
top_k, | |
repetition_penalty | |
): | |
messages = [] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
request_data = dict( | |
messages=messages, | |
max_new_tokens=max_new_tokens, | |
do_sample=do_sample, | |
seed=seed, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty | |
) | |
print(request_data) | |
with requests.post(url, json=request_data, stream=True, headers={"Authorization": f"Bearer {os.environ['HF_TOKEN']}"}) as r: | |
# printing response of each stream | |
for chunk in r.iter_content(1024): | |
response += chunk.decode("utf8") | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
chatbot=gr.Chatbot(height=600), | |
additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Checkbox(True, label="do sample"), | |
gr.Number(42, precision=0, label="seed"), | |
gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.01, maximum=4.0, value=0.7, step=0.01, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=1.0, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=100, | |
value=0, | |
step=1, | |
label="Top-K (Top-K sampling)", | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=2, | |
value=1.03, | |
step=0.01, | |
label="repetition penalty", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.queue(default_concurrency_limit=2, max_size=10) | |
demo.launch() |