import gradio as gr from huggingface_hub import InferenceClient import requests import os url = "http://47.94.86.196:8084/chat_completion" def respond( message, history: list[tuple[str, str]], do_sample: bool, seed: int, max_new_tokens, temperature, top_p, top_k, repetition_penalty ): messages = [] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" request_data = dict( messages=messages, max_new_tokens=max_new_tokens, do_sample=do_sample, seed=seed, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=repetition_penalty ) print(request_data) with requests.post(url, json=request_data, stream=True, headers={"Authorization": f"Bearer {os.environ['HF_TOKEN']}"}) as r: # printing response of each stream for chunk in r.iter_content(1024): response += chunk.decode("utf8") yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, chatbot=gr.Chatbot(height=600), additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Checkbox(True, label="do sample"), gr.Number(42, precision=0, label="seed"), gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens"), gr.Slider(minimum=0.01, maximum=4.0, value=0.7, step=0.01, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=1.0, step=0.05, label="Top-p (nucleus sampling)", ), gr.Slider( minimum=0, maximum=100, value=0, step=1, label="Top-K (Top-K sampling)", ), gr.Slider( minimum=1, maximum=2, value=1.03, step=0.01, label="repetition penalty", ), ], ) if __name__ == "__main__": demo.queue(default_concurrency_limit=2, max_size=10) demo.launch()