|
|
|
from transformers import ViTFeatureExtractor, ViTForImageClassification |
|
|
|
import torch |
|
import gradio as gr |
|
|
|
from PIL import Image |
|
|
|
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224') |
|
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224') |
|
|
|
import os, glob |
|
|
|
examples_dir = './samples' |
|
example_files = glob.glob(os.path.join(examples_dir, '*.jpg')) |
|
|
|
def classify_image(image): |
|
|
|
with torch.no_grad(): |
|
model.eval() |
|
|
|
inputs = feature_extractor(images=image, return_tensors="pt") |
|
outputs = model(**inputs) |
|
|
|
logits = outputs.logits |
|
prob = torch.nn.functional.softmax(logits, dim=1) |
|
|
|
top10_prob, top10_indices = torch.topk(prob, 10) |
|
top10_confidences = {} |
|
for i in range(10): |
|
top10_confidences[model.config.id2label[int(top10_indices[0][i])]] = float(top10_prob[0][i]) |
|
|
|
return top10_confidences |
|
|
|
|
|
with gr.Blocks(title="ViT ImageNet Classification - ClassCat", |
|
css=".gradio-container {background:mintcream;}" |
|
) as demo: |
|
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">ViT - ImageNet Classification</div>""") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(type="pil", image_mode="RGB", shape=(224, 224)) |
|
gr.Examples(example_files, inputs=input_image) |
|
|
|
output_label=gr.Label(label="Probabilities", num_top_classes=3) |
|
|
|
send_btn = gr.Button("Infer") |
|
send_btn.click(fn=classify_image, inputs=input_image, outputs=output_label) |
|
|
|
|
|
demo.launch(debug=True) |
|
|