File size: 1,689 Bytes
dfe0d6f 1f42eb9 78911a4 dfe0d6f 78911a4 dfe0d6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
from transformers import ViTFeatureExtractor, ViTForImageClassification
import torch
import gradio as gr
from PIL import Image
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224')
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
import os, glob
examples_dir = './samples'
example_files = glob.glob(os.path.join(examples_dir, '*.jpg'))
def classify_image(image):
with torch.no_grad():
model.eval()
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
prob = torch.nn.functional.softmax(logits, dim=1)
top10_prob, top10_indices = torch.topk(prob, 10)
top10_confidences = {}
for i in range(10):
top10_confidences[model.config.id2label[int(top10_indices[0][i])]] = float(top10_prob[0][i])
return top10_confidences #confidences
with gr.Blocks(title="ViT ImageNet Classification - ClassCat",
css=".gradio-container {background:mintcream;}"
) as demo:
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">ViT - ImageNet Classification</div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", image_mode="RGB", shape=(224, 224))
gr.Examples(example_files, inputs=input_image)
output_label=gr.Label(label="Probabilities", num_top_classes=3)
send_btn = gr.Button("Infer")
send_btn.click(fn=classify_image, inputs=input_image, outputs=output_label)
#demo.queue(concurrency_count=3)
demo.launch(debug=True)
|