File size: 5,326 Bytes
5b953fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e4185b
5b953fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import torch
from typing import Optional, Union, Tuple, Dict


def register_attention_control(model, controller):
    def ca_forward(self, place_in_unet):

        def forward(x, context=None, mask=None):
            batch_size, sequence_length, dim = x.shape
            h = self.heads
            q = self.to_q(x)
            is_cross = context is not None
            context = context if is_cross else x
            k = self.to_k(context)
            v = self.to_v(context)
            q = self.reshape_heads_to_batch_dim(q)
            k = self.reshape_heads_to_batch_dim(k)
            v = self.reshape_heads_to_batch_dim(v)

            sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale

            if mask is not None:
                mask = mask.reshape(batch_size, -1)
                max_neg_value = -torch.finfo(sim.dtype).max
                mask = mask[:, None, :].repeat(h, 1, 1)
                sim.masked_fill_(~mask, max_neg_value)

            # attention, what we cannot get enough of
            attn = sim.softmax(dim=-1)
            attn = controller(attn, is_cross, place_in_unet)
            out = torch.einsum("b i j, b j d -> b i d", attn, v)
            out = self.reshape_batch_dim_to_heads(out)

            # TODO: Chen (new version of diffusers)
            # return self.to_out(out)
            # linear proj
            out = self.to_out[0](out)
            # dropout
            out = self.to_out[1](out)
            return out

        return forward

    def register_recr(net_, count, place_in_unet):
        if net_.__class__.__name__ == 'CrossAttention':
            net_.forward = ca_forward(net_, place_in_unet)
            return count + 1
        elif hasattr(net_, 'children'):
            for net__ in net_.children():
                count = register_recr(net__, count, place_in_unet)
        return count

    cross_att_count = 0
    sub_nets = model.unet.named_children()
    for net in sub_nets:
        if "down" in net[0]:
            cross_att_count += register_recr(net[1], 0, "down")
        elif "up" in net[0]:
            cross_att_count += register_recr(net[1], 0, "up")
        elif "mid" in net[0]:
            cross_att_count += register_recr(net[1], 0, "mid")
    controller.num_att_layers = cross_att_count

    
def get_word_inds(text: str, word_place: int, tokenizer):
    split_text = text.split(" ")
    if type(word_place) is str:
        word_place = [i for i, word in enumerate(split_text) if word_place == word]
    elif type(word_place) is int:
        word_place = [word_place]
    out = []
    if len(word_place) > 0:
        words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
        cur_len, ptr = 0, 0

        for i in range(len(words_encode)):
            cur_len += len(words_encode[i])
            if ptr in word_place:
                out.append(i + 1)
            if cur_len >= len(split_text[ptr]):
                ptr += 1
                cur_len = 0
    return np.array(out)


def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, word_inds: Optional[torch.Tensor]=None):
    if type(bounds) is float:
        bounds = 0, bounds
    start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
    if word_inds is None:
        word_inds = torch.arange(alpha.shape[2])
    alpha[: start, prompt_ind, word_inds] = 0
    alpha[start: end, prompt_ind, word_inds] = 1
    alpha[end:, prompt_ind, word_inds] = 0
    return alpha


def get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
                                   tokenizer, max_num_words=77):
    if type(cross_replace_steps) is not dict:
        cross_replace_steps = {"default_": cross_replace_steps}
    if "default_" not in cross_replace_steps:
        cross_replace_steps["default_"] = (0., 1.)
    alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
    for i in range(len(prompts) - 1):
        alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"],
                                                  i)
    for key, item in cross_replace_steps.items():
        if key != "default_":
             inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
             for i, ind in enumerate(inds):
                 if len(ind) > 0:
                    alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
    alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) # time, batch, heads, pixels, words
    return alpha_time_words