FoundHand / app.py
chaerinmin's picture
code cleanup, fixhand examples autoload, change to youtube
33b5165
import os
import torch
from dataclasses import dataclass
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import cv2
import mediapipe as mp
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
import vqvae
import vit
from typing import Literal
from diffusion import create_diffusion
from utils import scale_keypoint, keypoint_heatmap, check_keypoints_validity
from segment_hoi import init_sam
from io import BytesIO
from PIL import Image
import random
from copy import deepcopy
from huggingface_hub import hf_hub_download
try:
import spaces
except:
pass
MAX_N = 6
FIX_MAX_N = 6
LENGTH = 480
placeholder = cv2.cvtColor(cv2.imread("placeholder.png"), cv2.COLOR_BGR2RGB)
NEW_MODEL = True
MODEL_EPOCH = 6
REF_POSE_MASK = True
HF = False
pre_device = "cpu" if HF else "cuda"
spaces_60_fn = spaces.GPU(duration=60) if HF else (lambda f: f)
spaces_120_fn = spaces.GPU(duration=60) if HF else (lambda f: f)
spaces_300_fn = spaces.GPU(duration=60) if HF else (lambda f: f)
def set_seed(seed):
seed = int(seed)
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
device = "cuda"
def remove_prefix(text, prefix):
if text.startswith(prefix):
return text[len(prefix) :]
return text
def unnormalize(x):
return (((x + 1) / 2) * 255).astype(np.uint8)
def visualize_hand(all_joints, img, side=["right", "left"], n_avail_joints=21):
# Define the connections between joints for drawing lines and their corresponding colors
connections = [
((0, 1), "red"),
((1, 2), "green"),
((2, 3), "blue"),
((3, 4), "purple"),
((0, 5), "orange"),
((5, 6), "pink"),
((6, 7), "brown"),
((7, 8), "cyan"),
((0, 9), "yellow"),
((9, 10), "magenta"),
((10, 11), "lime"),
((11, 12), "indigo"),
((0, 13), "olive"),
((13, 14), "teal"),
((14, 15), "navy"),
((15, 16), "gray"),
((0, 17), "lavender"),
((17, 18), "silver"),
((18, 19), "maroon"),
((19, 20), "fuchsia"),
]
H, W, C = img.shape
# Create a figure and axis
plt.figure()
ax = plt.gca()
# Plot joints as points
ax.imshow(img)
start_is = []
if "right" in side:
start_is.append(0)
if "left" in side:
start_is.append(21)
for start_i in start_is:
joints = all_joints[start_i : start_i + n_avail_joints]
if len(joints) == 1:
ax.scatter(joints[0][0], joints[0][1], color="red", s=10)
else:
for connection, color in connections[: len(joints) - 1]:
joint1 = joints[connection[0]]
joint2 = joints[connection[1]]
ax.plot([joint1[0], joint2[0]], [joint1[1], joint2[1]], color=color)
ax.set_xlim([0, W])
ax.set_ylim([0, H])
ax.grid(False)
ax.set_axis_off()
ax.invert_yaxis()
# plt.subplots_adjust(wspace=0.01)
# plt.show()
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight", pad_inches=0)
plt.close()
# Convert BytesIO object to numpy array
buf.seek(0)
img_pil = Image.open(buf)
img_pil = img_pil.resize((W, H))
numpy_img = np.array(img_pil)
return numpy_img
def mask_image(image, mask, color=[0, 0, 0], alpha=0.6, transparent=True):
"""Overlay mask on image for visualization purpose.
Args:
image (H, W, 3) or (H, W): input image
mask (H, W): mask to be overlaid
color: the color of overlaid mask
alpha: the transparency of the mask
"""
out = deepcopy(image)
img = deepcopy(image)
img[mask == 1] = color
if transparent:
out = cv2.addWeighted(img, alpha, out, 1 - alpha, 0, out)
else:
out = img
return out
def scale_keypoint(keypoint, original_size, target_size):
"""Scale a keypoint based on the resizing of the image."""
keypoint_copy = keypoint.copy()
keypoint_copy[:, 0] *= target_size[0] / original_size[0]
keypoint_copy[:, 1] *= target_size[1] / original_size[1]
return keypoint_copy
print("Configure...")
@dataclass
class HandDiffOpts:
run_name: str = "ViT_256_handmask_heatmap_nvs_b25_lr1e-5"
sd_path: str = "/users/kchen157/scratch/weights/SD/sd-v1-4.ckpt"
log_dir: str = "/users/kchen157/scratch/log"
data_root: str = "/users/kchen157/data/users/kchen157/dataset/handdiff"
image_size: tuple = (256, 256)
latent_size: tuple = (32, 32)
latent_dim: int = 4
mask_bg: bool = False
kpts_form: str = "heatmap"
n_keypoints: int = 42
n_mask: int = 1
noise_steps: int = 1000
test_sampling_steps: int = 250
ddim_steps: int = 100
ddim_discretize: str = "uniform"
ddim_eta: float = 0.0
beta_start: float = 8.5e-4
beta_end: float = 0.012
latent_scaling_factor: float = 0.18215
cfg_pose: float = 5.0
cfg_appearance: float = 3.5
batch_size: int = 25
lr: float = 1e-5
max_epochs: int = 500
log_every_n_steps: int = 100
limit_val_batches: int = 1
n_gpu: int = 8
num_nodes: int = 1
precision: str = "16-mixed"
profiler: str = "simple"
swa_epoch_start: int = 10
swa_lrs: float = 1e-3
num_workers: int = 10
n_val_samples: int = 4
# load models
token = os.getenv("HF_TOKEN")
if NEW_MODEL:
opts = HandDiffOpts()
if MODEL_EPOCH == 7:
model_path = './DINO_EMA_11M_b50_lr1e-5_epoch7_step380k.ckpt'
elif MODEL_EPOCH == 6:
model_path = "./DINO_EMA_11M_b50_lr1e-5_epoch6_step320k.ckpt"
if not os.path.exists(model_path):
model_path = hf_hub_download(repo_id="Chaerin5/FoundHand-weights", filename="DINO_EMA_11M_b50_lr1e-5_epoch6_step320k.ckpt", token=token)
elif MODEL_EPOCH == 4:
model_path = "./DINO_EMA_11M_b50_lr1e-5_epoch4_step210k.ckpt"
elif MODEL_EPOCH == 10:
model_path = "./DINO_EMA_11M_b50_lr1e-5_epoch10_step550k.ckpt"
else:
raise ValueError(f"new model epoch should be either 6 or 7, got {MODEL_EPOCH}")
vae_path = './vae-ft-mse-840000-ema-pruned.ckpt'
if not os.path.exists(vae_path):
vae_path = hf_hub_download(repo_id="Chaerin5/FoundHand-weights", filename="vae-ft-mse-840000-ema-pruned.ckpt", token=token)
# sd_path = './sd-v1-4.ckpt'
print('Load diffusion model...')
diffusion = create_diffusion(str(opts.test_sampling_steps))
model = vit.DiT_XL_2(
input_size=opts.latent_size[0],
latent_dim=opts.latent_dim,
in_channels=opts.latent_dim+opts.n_keypoints+opts.n_mask,
learn_sigma=True,
).to(device)
# ckpt_state_dict = torch.load(model_path)['model_state_dict']
ckpt_state_dict = torch.load(model_path, map_location='cpu')['ema_state_dict']
missing_keys, extra_keys = model.load_state_dict(ckpt_state_dict, strict=False)
model = model.to(device)
model.eval()
print(missing_keys, extra_keys)
assert len(missing_keys) == 0
vae_state_dict = torch.load(vae_path, map_location='cpu')['state_dict']
print(f"vae_state_dict encoder dtype: {vae_state_dict['encoder.conv_in.weight'].dtype}")
autoencoder = vqvae.create_model(3, 3, opts.latent_dim).eval().requires_grad_(False)
print(f"autoencoder encoder dtype: {next(autoencoder.encoder.parameters()).dtype}")
print(f"encoder before load_state_dict parameters min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
print(f"encoder before load_state_dict parameters max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
missing_keys, extra_keys = autoencoder.load_state_dict(vae_state_dict, strict=False)
print(f"encoder after load_state_dict parameters min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
print(f"encoder after load_state_dict parameters max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
autoencoder = autoencoder.to(device)
autoencoder.eval()
print(f"encoder after eval() min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
print(f"encoder after eval() max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
print(f"autoencoder encoder after eval() dtype: {next(autoencoder.encoder.parameters()).dtype}")
assert len(missing_keys) == 0
sam_path = "sam_vit_h_4b8939.pth"
if not os.path.exists(sam_path):
sam_path = hf_hub_download(repo_id="Chaerin5/FoundHand-weights", filename="sam_vit_h_4b8939.pth", token=token)
sam_predictor = init_sam(ckpt_path=sam_path, device=pre_device)
print("Mediapipe hand detector and SAM ready...")
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(
static_image_mode=True, # Use False if image is part of a video stream
max_num_hands=2, # Maximum number of hands to detect
min_detection_confidence=0.1,
)
no_hands_open = cv2.resize(np.array(Image.open("no_hands_open.jpeg"))[..., :3], (LENGTH, LENGTH))
def prepare_anno(ref, ref_is_user):
if not ref_is_user: # no_hand_open.jpeg
return gr.update(value=None), gr.update(value=None)
if ref is None or ref["background"] is None or ref["background"].sum()==0: # clear_all
return (
gr.update(value=None),
gr.update(value=None),
)
img = ref["composite"][..., :3]
img = cv2.resize(img, opts.image_size, interpolation=cv2.INTER_AREA)
keypts = np.zeros((42, 2))
mp_pose = hands.process(img)
if mp_pose.multi_hand_landmarks:
# handedness is flipped assuming the input image is mirrored in MediaPipe
for hand_landmarks, handedness in zip(
mp_pose.multi_hand_landmarks, mp_pose.multi_handedness
):
# actually right hand
if handedness.classification[0].label == "Left":
start_idx = 0
# actually left hand
elif handedness.classification[0].label == "Right":
start_idx = 21
for i, landmark in enumerate(hand_landmarks.landmark):
keypts[start_idx + i] = [
landmark.x * opts.image_size[1],
landmark.y * opts.image_size[0],
]
print(f"keypts.max(): {keypts.max()}, keypts.min(): {keypts.min()}")
return img, keypts
else:
return img, None
def get_ref_anno(img, keypts):
if img.sum() == 0: # clear_all
return None, gr.update(), None, gr.update(), True
elif keypts is None: # hand not detected
no_hands = cv2.resize(np.array(Image.open("no_hands.png"))[..., :3], (LENGTH, LENGTH))
return None, no_hands, None, no_hands_open, False
missing_keys, extra_keys = autoencoder.load_state_dict(vae_state_dict, strict=False)
if isinstance(keypts, list):
if len(keypts[0]) == 0:
keypts[0] = np.zeros((21, 2))
elif len(keypts[0]) == 21:
keypts[0] = np.array(keypts[0], dtype=np.float32)
else:
gr.Info("Number of right hand keypoints should be either 0 or 21.")
return None, None, None, gr.update(), gr.update()
if len(keypts[1]) == 0:
keypts[1] = np.zeros((21, 2))
elif len(keypts[1]) == 21:
keypts[1] = np.array(keypts[1], dtype=np.float32)
else:
gr.Info("Number of left hand keypoints should be either 0 or 21.")
return None, None, None, gr.update(), gr.update()
keypts = np.concatenate(keypts, axis=0)
if REF_POSE_MASK:
sam_predictor.set_image(img)
if keypts[0].sum() != 0 and keypts[21].sum() != 0:
# input_point = np.array([keypts[0], keypts[21]])
input_point = np.array(keypts)
input_box = np.stack([keypts.min(axis=0), keypts.max(axis=0)])
# input_label = np.array([1, 1])
elif keypts[0].sum() != 0:
# input_point = np.array(keypts[:1])
input_point = np.array(keypts[:21])
input_box = np.stack([keypts[:21].min(axis=0), keypts[:21].max(axis=0)])
# input_label = np.array([1])
elif keypts[21].sum() != 0:
input_point = np.array(keypts[21:])
# input_label = np.array([1])
input_box = np.stack([keypts[21:].min(axis=0), keypts[21:].max(axis=0)])
input_label = np.ones_like(input_point[:, 0]).astype(np.int32)
box_shift_ratio = 0.5
box_size_factor = 1.2
box_trans = input_box[0] * box_shift_ratio + input_box[1] * (1 - box_shift_ratio)
input_box = ((input_box - box_trans) * box_size_factor + box_trans).reshape(-1)
masks, _, _ = sam_predictor.predict(
point_coords=input_point,
point_labels=input_label,
box=input_box[None, :],
multimask_output=False,
)
hand_mask = masks[0]
masked_img = img * hand_mask[..., None] + 255 * (1 - hand_mask[..., None])
ref_pose = visualize_hand(keypts, masked_img)
else:
hand_mask = np.zeros_like(img[:,:, 0])
ref_pose = np.zeros_like(img)
def make_ref_cond(
img,
keypts,
hand_mask,
device="cuda",
target_size=(256, 256),
latent_size=(32, 32),
):
image_transform = Compose(
[
ToTensor(),
Resize(target_size),
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
image = image_transform(img).to(device)
kpts_valid = check_keypoints_validity(keypts, target_size)
heatmaps = torch.tensor(
keypoint_heatmap(
scale_keypoint(keypts, target_size, latent_size), latent_size, var=1.0
)
* kpts_valid[:, None, None],
dtype=torch.float,
device=device
)[None, ...]
mask = torch.tensor(
cv2.resize(
hand_mask.astype(int),
dsize=latent_size,
interpolation=cv2.INTER_NEAREST,
),
dtype=torch.float,
device=device,
).unsqueeze(0)[None, ...]
return image[None, ...], heatmaps, mask
print(f"img.max(): {img.max()}, img.min(): {img.min()}")
image, heatmaps, mask = make_ref_cond(
img,
keypts,
hand_mask,
device=pre_device,
target_size=opts.image_size,
latent_size=opts.latent_size,
)
print(f"image.max(): {image.max()}, image.min(): {image.min()}")
print(f"opts.latent_scaling_factor: {opts.latent_scaling_factor}")
print(f"autoencoder encoder before operating max: {min([p.min() for p in autoencoder.encoder.parameters()])}")
print(f"autoencoder encoder before operating min: {max([p.max() for p in autoencoder.encoder.parameters()])}")
print(f"autoencoder encoder before operating dtype: {next(autoencoder.encoder.parameters()).dtype}")
latent = opts.latent_scaling_factor * autoencoder.encode(image).sample()
print(f"latent.max(): {latent.max()}, latent.min(): {latent.min()}")
if not REF_POSE_MASK:
heatmaps = torch.zeros_like(heatmaps)
mask = torch.zeros_like(mask)
print(f"heatmaps.max(): {heatmaps.max()}, heatmaps.min(): {heatmaps.min()}")
print(f"mask.max(): {mask.max()}, mask.min(): {mask.min()}")
ref_cond = torch.cat([latent, heatmaps, mask], 1)
print(f"ref_cond.max(): {ref_cond.max()}, ref_cond.min(): {ref_cond.min()}")
return img, ref_pose, ref_cond, gr.update(), True
def get_target_anno(img, keypts):
if img.sum() == 0: # clear_all
return None, gr.update(), None, gr.update(), True
if keypts is None: # hands not detected
no_hands = cv2.resize(np.array(Image.open("no_hands.png"))[..., :3], (LENGTH, LENGTH))
return None, no_hands, None, None, no_hands_open, False
if isinstance(keypts, list):
if len(keypts[0]) == 0:
keypts[0] = np.zeros((21, 2))
elif len(keypts[0]) == 21:
keypts[0] = np.array(keypts[0], dtype=np.float32)
else:
gr.Info("Number of right hand keypoints should be either 0 or 21.")
return None, None, None, gr.update(), gr.update(), gr.update()
if len(keypts[1]) == 0:
keypts[1] = np.zeros((21, 2))
elif len(keypts[1]) == 21:
keypts[1] = np.array(keypts[1], dtype=np.float32)
else:
gr.Info("Number of left hand keypoints should be either 0 or 21.")
return None, None, None, gr.update(), gr.update(), gr.update()
keypts = np.concatenate(keypts, axis=0)
target_pose = visualize_hand(keypts, img)
kpts_valid = check_keypoints_validity(keypts, opts.image_size)
target_heatmaps = torch.tensor(
keypoint_heatmap(
scale_keypoint(keypts, opts.image_size, opts.latent_size),
opts.latent_size,
var=1.0,
)
* kpts_valid[:, None, None],
dtype=torch.float,
device=pre_device,
)[None, ...]
target_cond = torch.cat(
[target_heatmaps, torch.zeros_like(target_heatmaps)[:, :1]], 1
)
return img, target_pose, target_cond, keypts, gr.update(), True
def visualize_ref(ref):
if ref is None:
return None
# from user or from example
h, w = ref["background"].shape[:2]
if ref["layers"][0].sum() == 0:
if ref["background"][:, :, -1].sum() == h * w * 255:
from_example = False
else:
from_example = True
else:
from_example = False
# inpaint mask
if from_example:
inpaint_mask = ref["background"][:, :, -1]
inpainted = inpaint_mask.copy()
inpaint_mask = cv2.resize(
inpaint_mask, opts.image_size, interpolation=cv2.INTER_AREA
)
inpaint_mask = (inpaint_mask > 128).astype(np.uint8)
img = cv2.cvtColor(ref["background"], cv2.COLOR_RGBA2RGB)
else:
inpaint_mask = np.array(ref["layers"][0])[..., -1]
inpaint_mask = cv2.resize(
inpaint_mask, opts.image_size, interpolation=cv2.INTER_AREA
)
inpaint_mask = (inpaint_mask >= 128).astype(np.uint8)
inpainted = ref["layers"][0][..., -1]
img = ref["background"][..., :3]
# viualization
mask = inpainted < 128
img = mask_image(img, mask)
if inpaint_mask.sum() == 0:
gr.Warning("Run botton not enabled? Please try again.", duration=10)
return img, inpaint_mask
def get_kps(img, keypoints, side: Literal["right", "left"], evt: gr.SelectData):
if keypoints is None:
keypoints = [[], []]
kps = np.zeros((42, 2))
if side == "right":
if len(keypoints[0]) == 21:
gr.Info("21 keypoints for right hand already selected. Try reset if something looks wrong.")
else:
keypoints[0].append(list(evt.index))
len_kps = len(keypoints[0])
kps[:len_kps] = np.array(keypoints[0])
elif side == "left":
if len(keypoints[1]) == 21:
gr.Info("21 keypoints for left hand already selected. Try reset if something looks wrong.")
else:
keypoints[1].append(list(evt.index))
len_kps = len(keypoints[1])
kps[21 : 21 + len_kps] = np.array(keypoints[1])
vis_hand = visualize_hand(kps, img, side, len_kps)
return vis_hand, keypoints
def undo_kps(img, keypoints, side: Literal["right", "left"]):
if keypoints is None:
return img, None
kps = np.zeros((42, 2))
if side == "right":
if len(keypoints[0]) == 0:
return img, keypoints
keypoints[0].pop()
len_kps = len(keypoints[0])
kps[:len_kps] = np.array(keypoints[0])
elif side == "left":
if len(keypoints[1]) == 0:
return img, keypoints
keypoints[1].pop()
len_kps = len(keypoints[1])
kps[21 : 21 + len_kps] = np.array(keypoints[1])
vis_hand = visualize_hand(kps, img, side, len_kps)
return vis_hand, keypoints
def reset_kps(img, keypoints, side: Literal["right", "left"]):
if keypoints is None:
return img, None
if side == "right":
keypoints[0] = []
elif side == "left":
keypoints[1] = []
return img, keypoints
def read_kpts(kpts_path):
if kpts_path is None or len(kpts_path)==0:
return None
kpts = np.load(kpts_path)
return kpts
def stay_crop(img, crop_coord):
if img is not None:
if crop_coord is None:
crop_coord = [[0, 0], [img.shape[1], img.shape[0]]]
cropped = img.copy()
return crop_coord, cropped
else:
return gr.update(), gr.update()
else:
return None, None
def stash_original(img):
if img is None:
return None
else:
return img[:,:,:3]
def process_crop(img, crop_coord, evt:gr.SelectData):
image = img.copy()
if len(crop_coord) == 2: # will add first click
crop_coord = [list(evt.index)]
cropped = image
cropped_vis = image.copy()
alpha = np.ones_like(cropped_vis[:,:, -1]) * 255
cv2.circle(alpha, tuple(crop_coord[0]), 5, 0, 4)
cropped_vis[:,:,-1] = alpha
elif len(crop_coord) == 1:
new_coord =list(evt.index)
if new_coord[0] <= crop_coord[0][0] or new_coord[1] <= crop_coord[0][1]: # will skip
gr.Warning("Second click should be more under and more right thand the first click. Try second click again.", duration=3)
cropped = image
cropped_vis = image.copy()
cropped_vis[:,:,-1] = 255
else: # will add second click
crop_coord.append(new_coord)
x1, y1 = crop_coord[0]
x2, y2 = crop_coord[1]
cropped = image[y1:y2, x1:x2]
cropped_vis = image.copy()
alpha = np.ones_like(cropped_vis[:,:, -1]) * 255
cv2.rectangle(alpha, tuple([x1, y1]), tuple([x2, y2]), 0, 4)
cropped_vis[:,:,-1] = alpha
else:
gr.Error("Something is wrong", duration=3)
return crop_coord, cropped, cropped_vis
def disable_crop(crop_coord):
if len(crop_coord) == 2:
return gr.update(interactive=False)
else:
return gr.update(interactive=True)
@spaces_60_fn
def sample_diff(ref_cond, target_cond, target_keypts, num_gen, seed, cfg):
set_seed(seed)
z = torch.randn(
(num_gen, opts.latent_dim, opts.latent_size[0], opts.latent_size[1]),
device=device,
)
print(f"z.device: {z.device}")
target_cond = target_cond.repeat(num_gen, 1, 1, 1).to(z.device)
ref_cond = ref_cond.repeat(num_gen, 1, 1, 1).to(z.device)
print(f"target_cond.max(): {target_cond.max()}, target_cond.min(): {target_cond.min()}")
print(f"ref_cond.max(): {ref_cond.max()}, ref_cond.min(): {ref_cond.min()}")
# novel view synthesis mode = off
nvs = torch.zeros(num_gen, dtype=torch.int, device=device)
z = torch.cat([z, z], 0)
model_kwargs = dict(
target_cond=torch.cat([target_cond, torch.zeros_like(target_cond)]),
ref_cond=torch.cat([ref_cond, torch.zeros_like(ref_cond)]),
nvs=torch.cat([nvs, 2 * torch.ones_like(nvs)]),
cfg_scale=cfg,
)
gr.Info("The process successfully started to run. Please wait for 50s x Number of Generation.", duration=20)
samples, _ = diffusion.p_sample_loop(
model.forward_with_cfg,
z.shape,
z,
clip_denoised=False,
model_kwargs=model_kwargs,
progress=True,
device=device,
).chunk(2)
sampled_images = autoencoder.decode(samples / opts.latent_scaling_factor)
sampled_images = torch.clamp(sampled_images, min=-1.0, max=1.0)
sampled_images = unnormalize(sampled_images.permute(0, 2, 3, 1).cpu().numpy())
results = []
results_pose = []
for i in range(MAX_N):
if i < num_gen:
results.append(sampled_images[i])
results_pose.append(visualize_hand(target_keypts, sampled_images[i]))
else:
results.append(placeholder)
results_pose.append(placeholder)
print(f"results[0].max(): {results[0].max()}")
return results, results_pose
@spaces_120_fn
def ready_sample(img_cropped, inpaint_mask, keypts, keypts_np):
img = cv2.resize(img_cropped["background"][..., :3], opts.image_size, interpolation=cv2.INTER_AREA)
sam_predictor.set_image(img)
if keypts is None and keypts_np is not None:
keypts = keypts_np
else:
if len(keypts[0]) == 0:
keypts[0] = np.zeros((21, 2))
elif len(keypts[0]) == 21:
keypts[0] = np.array(keypts[0], dtype=np.float32)
else:
gr.Info("Number of right hand keypoints should be either 0 or 21.")
return None, None
if len(keypts[1]) == 0:
keypts[1] = np.zeros((21, 2))
elif len(keypts[1]) == 21:
keypts[1] = np.array(keypts[1], dtype=np.float32)
else:
gr.Info("Number of left hand keypoints should be either 0 or 21.")
return None, None
keypts = np.concatenate(keypts, axis=0)
keypts = scale_keypoint(keypts, (img_cropped["background"].shape[1], img_cropped["background"].shape[0]), opts.image_size)
box_shift_ratio = 0.5
box_size_factor = 1.2
if keypts[0].sum() != 0 and keypts[21].sum() != 0:
input_point = np.array(keypts)
input_box = np.stack([keypts.min(axis=0), keypts.max(axis=0)])
elif keypts[0].sum() != 0:
input_point = np.array(keypts[:21])
input_box = np.stack([keypts[:21].min(axis=0), keypts[:21].max(axis=0)])
elif keypts[21].sum() != 0:
input_point = np.array(keypts[21:])
input_box = np.stack([keypts[21:].min(axis=0), keypts[21:].max(axis=0)])
else:
raise ValueError(
"Something wrong. If no hand detected, it should not reach here."
)
input_label = np.ones_like(input_point[:, 0]).astype(np.int32)
box_trans = input_box[0] * box_shift_ratio + input_box[1] * (1 - box_shift_ratio)
input_box = ((input_box - box_trans) * box_size_factor + box_trans).reshape(-1)
masks, _, _ = sam_predictor.predict(
point_coords=input_point,
point_labels=input_label,
box=input_box[None, :],
multimask_output=False,
)
hand_mask = masks[0]
inpaint_latent_mask = torch.tensor(
cv2.resize(
inpaint_mask, dsize=opts.latent_size, interpolation=cv2.INTER_NEAREST
),
dtype=torch.float,
device=pre_device,
).unsqueeze(0)[None, ...]
def make_ref_cond(
img,
keypts,
hand_mask,
device=device,
target_size=(256, 256),
latent_size=(32, 32),
):
image_transform = Compose(
[
ToTensor(),
Resize(target_size),
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
image = image_transform(img).to(device)
kpts_valid = check_keypoints_validity(keypts, target_size)
heatmaps = torch.tensor(
keypoint_heatmap(
scale_keypoint(keypts, target_size, latent_size), latent_size, var=1.0
)
* kpts_valid[:, None, None],
dtype=torch.float,
device=device,
)[None, ...]
mask = torch.tensor(
cv2.resize(
hand_mask.astype(int),
dsize=latent_size,
interpolation=cv2.INTER_NEAREST,
),
dtype=torch.float,
device=device,
).unsqueeze(0)[None, ...]
return image[None, ...], heatmaps, mask
image, heatmaps, mask = make_ref_cond(
img,
keypts,
hand_mask * (1 - inpaint_mask),
device=pre_device,
target_size=opts.image_size,
latent_size=opts.latent_size,
)
latent = opts.latent_scaling_factor * autoencoder.encode(image).sample()
target_cond = torch.cat([heatmaps, torch.zeros_like(mask)], 1)
ref_cond = torch.cat([latent, heatmaps, mask], 1)
ref_cond = torch.zeros_like(ref_cond)
img32 = cv2.resize(img, opts.latent_size, interpolation=cv2.INTER_NEAREST)
assert mask.max() == 1
vis_mask32 = mask_image(
img32, inpaint_latent_mask[0,0].cpu().numpy(), (255,255,255), transparent=False
).astype(np.uint8) # 1.0 - mask[0, 0].cpu().numpy()
assert np.unique(inpaint_mask).shape[0] <= 2
assert hand_mask.dtype == bool
mask256 = inpaint_mask # hand_mask * (1 - inpaint_mask)
vis_mask256 = mask_image(img, mask256, (255,255,255), transparent=False).astype(
np.uint8
) # 1 - mask256
return (
ref_cond,
target_cond,
latent,
inpaint_latent_mask,
keypts,
vis_mask32,
vis_mask256,
)
def switch_mask_size(radio):
if radio == "256x256":
out = (gr.update(visible=False), gr.update(visible=True))
elif radio == "latent size (32x32)":
out = (gr.update(visible=True), gr.update(visible=False))
return out
@spaces_300_fn
def sample_inpaint(
ref_cond,
target_cond,
latent,
inpaint_latent_mask,
keypts,
img_original,
crop_coord,
num_gen,
seed,
cfg,
quality,
):
if inpaint_latent_mask is None:
return None, None, None
set_seed(seed)
N = num_gen
jump_length = 10
jump_n_sample = quality
cfg_scale = cfg
z = torch.randn(
(N, opts.latent_dim, opts.latent_size[0], opts.latent_size[1]), device=device
)
target_cond_N = target_cond.repeat(N, 1, 1, 1).to(z.device)
ref_cond_N = ref_cond.repeat(N, 1, 1, 1).to(z.device)
# novel view synthesis mode = off
nvs = torch.zeros(N, dtype=torch.int, device=device)
z = torch.cat([z, z], 0)
model_kwargs = dict(
target_cond=torch.cat([target_cond_N, torch.zeros_like(target_cond_N)]),
ref_cond=torch.cat([ref_cond_N, torch.zeros_like(ref_cond_N)]),
nvs=torch.cat([nvs, 2 * torch.ones_like(nvs)]),
cfg_scale=cfg_scale,
)
gr.Info("The process successfully started to run. Please wait for around 3.5 minutes.", duration=220)
samples, _ = diffusion.inpaint_p_sample_loop(
model.forward_with_cfg,
z.shape,
latent.to(z.device),
inpaint_latent_mask.to(z.device),
z,
clip_denoised=False,
model_kwargs=model_kwargs,
progress=True,
device=z.device,
jump_length=jump_length,
jump_n_sample=jump_n_sample,
).chunk(2)
sampled_images = autoencoder.decode(samples / opts.latent_scaling_factor)
sampled_images = torch.clamp(sampled_images, min=-1.0, max=1.0)
sampled_images = unnormalize(sampled_images.permute(0, 2, 3, 1).cpu().numpy())
# visualize
results = []
results_pose = []
results_original = []
for i in range(FIX_MAX_N):
if i < num_gen:
res =sampled_images[i]
results.append(res)
results_pose.append(visualize_hand(keypts, res))
res = cv2.resize(res, (crop_coord[1][0]-crop_coord[0][0], crop_coord[1][1]-crop_coord[0][1]))
res_original = img_original.copy()
res_original[crop_coord[0][1]:crop_coord[1][1], crop_coord[0][0]:crop_coord[1][0], :] = res
results_original.append(res_original)
else:
results.append(placeholder)
results_pose.append(placeholder)
results_original.append(placeholder)
return results, results_pose, results_original
def flip_hand(
img, img_raw, pose_img, pose_manual_img,
manual_kp_right, manual_kp_left,
cond, auto_cond, manual_cond,
keypts=None, auto_keypts=None, manual_keypts=None
):
if cond is None: # clear clicked
return
img["composite"] = img["composite"][:, ::-1, :]
img["background"] = img["background"][:, ::-1, :]
img["layers"] = [layer[:, ::-1, :] for layer in img["layers"]]
if img_raw is not None:
img_raw = img_raw[:, ::-1, :]
pose_img = pose_img[:, ::-1, :]
if pose_manual_img is not None:
pose_manual_img = pose_manual_img[:, ::-1, :]
if manual_kp_right is not None:
manual_kp_right = manual_kp_right[:, ::-1, :]
if manual_kp_left is not None:
manual_kp_left = manual_kp_left[:, ::-1, :]
cond = cond.flip(-1)
if auto_cond is not None:
auto_cond = auto_cond.flip(-1)
if manual_cond is not None:
manual_cond = manual_cond.flip(-1)
if keypts is not None:
if keypts[:21, :].sum() != 0:
keypts[:21, 0] = opts.image_size[1] - keypts[:21, 0]
if keypts[21:, :].sum() != 0:
keypts[21:, 0] = opts.image_size[1] - keypts[21:, 0]
if auto_keypts is not None:
if auto_keypts[:21, :].sum() != 0:
auto_keypts[:21, 0] = opts.image_size[1] - auto_keypts[:21, 0]
if auto_keypts[21:, :].sum() != 0:
auto_keypts[21:, 0] = opts.image_size[1] - auto_keypts[21:, 0]
if manual_keypts is not None:
if manual_keypts[:21, :].sum() != 0:
manual_keypts[:21, 0] = opts.image_size[1] - manual_keypts[:21, 0]
if manual_keypts[21:, :].sum() != 0:
manual_keypts[21:, 0] = opts.image_size[1] - manual_keypts[21:, 0]
return img, img_raw, pose_img, pose_manual_img, manual_kp_right, manual_kp_left, cond, auto_cond, manual_cond, keypts, auto_keypts, manual_keypts
def resize_to_full(img):
img["background"] = cv2.resize(img["background"], (LENGTH, LENGTH))
img["composite"] = cv2.resize(img["composite"], (LENGTH, LENGTH))
img["layers"] = [cv2.resize(layer, (LENGTH, LENGTH)) for layer in img["layers"]]
return img
def clear_all():
return (
None,
[],
None,
None,
None,
None,
None,
None,
False,
None,
None,
[],
None,
None,
None,
None,
None,
None,
False,
None,
None,
1,
42,
3.0,
gr.update(interactive=False),
)
def fix_clear_all():
return (
None,
None,
None,
[],
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
1,
42,
3.0,
10,
)
def enable_component(image1, image2):
if image1 is None or image2 is None:
return gr.update(interactive=False)
if isinstance(image1, np.ndarray) and image1.sum() == 0:
return gr.update(interactive=False)
if isinstance(image2, np.ndarray) and image2.sum() == 0:
return gr.update(interactive=False)
if isinstance(image1, dict) and "background" in image1 and "layers" in image1 and "composite" in image1:
if image1["background"] is None or (
image1["background"].sum() == 0
and (sum([im.sum() for im in image1["layers"]]) == 0)
and image1["composite"].sum() == 0
):
return gr.update(interactive=False)
if isinstance(image1, dict) and "background" in image2 and "layers" in image2 and "composite" in image2:
if image2["background"] is None or (
image2["background"].sum() == 0
and (sum([im.sum() for im in image2["layers"]]) == 0)
and image2["composite"].sum() == 0
):
return gr.update(interactive=False)
return gr.update(interactive=True)
def set_visible(checkbox, kpts, img_clean, img_pose_right, img_pose_left, done=None, done_info=None):
if kpts is None:
kpts = [[], []]
if "Right hand" not in checkbox:
kpts[0] = []
vis_right = img_clean
update_right = gr.update(visible=False)
update_r_info = gr.update(visible=False)
else:
vis_right = img_pose_right
update_right = gr.update(visible=True)
update_r_info = gr.update(visible=True)
if "Left hand" not in checkbox:
kpts[1] = []
vis_left = img_clean
update_left = gr.update(visible=False)
update_l_info = gr.update(visible=False)
else:
vis_left = img_pose_left
update_left = gr.update(visible=True)
update_l_info = gr.update(visible=True)
ret = [
kpts,
vis_right,
vis_left,
update_right,
update_right,
update_right,
update_left,
update_left,
update_left,
update_r_info,
update_l_info,
]
if done is not None:
if not checkbox:
ret.append(gr.update(visible=False))
ret.append(gr.update(visible=False))
else:
ret.append(gr.update(visible=True))
ret.append(gr.update(visible=True))
return tuple(ret)
def set_unvisible():
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
)
def fix_set_unvisible():
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
)
def visible_component(decider, component):
if decider is not None:
update_component = gr.update(visible=True)
else:
update_component = gr.update(visible=False)
return update_component
def unvisible_component(decider, component):
if decider is not None:
update_component = gr.update(visible=False)
else:
update_component = gr.update(visible=True)
return update_component
example_ref_imgs = [
[
"sample_images/sample1.jpg",
],
[
"sample_images/sample2.jpg",
],
[
"sample_images/sample3.jpg",
],
[
"sample_images/sample4.jpg",
],
[
"sample_images/sample6.jpg",
],
]
example_target_imgs = [
[
"sample_images/sample5.jpg",
],
[
"sample_images/sample9.jpg",
],
[
"sample_images/sample10.jpg",
],
[
"sample_images/sample11.jpg",
],
["pose_images/pose1.jpg"],
]
fix_example_imgs = [
["bad_hands/1.jpg"],
["bad_hands/3.jpg"],
["bad_hands/4.jpg"],
["bad_hands/5.jpg"],
["bad_hands/6.jpg"],
["bad_hands/7.jpg"],
]
fix_example_brush = [
["bad_hands/1_composite.png"],
["bad_hands/3_composite.png"],
["bad_hands/4_composite.png"],
["bad_hands/5_composite.png"],
["bad_hands/6_composite.png"],
["bad_hands/7_composite.png"],
]
fix_example_kpts = [
["bad_hands/1_kpts.png", 3.0, 1224],
["bad_hands/3_kpts.png", 1.0, 42],
["bad_hands/4_kpts.png", 2.0, 42],
["bad_hands/5_kpts.png", 3.0, 42],
["bad_hands/6_kpts.png", 3.0, 1348],
["bad_hands/7_kpts.png", 3.0, 42],
]
fix_example_all = [
["bad_hands/1.jpg", "bad_hands/1_composite.png", "bad_hands/1_kpts.png", 3.0, 1224],
["bad_hands/3.jpg", "bad_hands/3_composite.png", "bad_hands/3_kpts.png", 1.0, 42],
["bad_hands/4.jpg", "bad_hands/4_composite.png", "bad_hands/4_kpts.png", 2.0, 42],
["bad_hands/5.jpg", "bad_hands/5_composite.png", "bad_hands/5_kpts.png", 3.0, 42],
["bad_hands/6.jpg", "bad_hands/6_composite.png", "bad_hands/6_kpts.png", 3.0, 1348],
["bad_hands/7.jpg", "bad_hands/7_composite.png", "bad_hands/7_kpts.png", 3.0, 42],
]
for i in range(len(fix_example_kpts)):
npy_path = fix_example_kpts[i][0].replace("_kpts.png", ".npy")
fix_example_kpts[i].append(npy_path)
for i in range(len(fix_example_all)):
npy_path = fix_example_all[i][2].replace("_kpts.png", ".npy")
fix_example_all[i].append(npy_path)
custom_css = """
.gradio-container .examples img {
width: 240px !important;
height: 240px !important;
}
#fix-tab-button {
font-size: 18px !important;
font-weight: bold !important;
background-color: #FFDAB9 !important;
}
#repose-tab-button {
font-size: 18px !important;
font-weight: bold !important;
background-color: #90EE90 !important;
}
#kpts_examples table tr th:nth-child(2),
#kpts_examples table tr td:nth-child(2) {
display: none !important;
}
#kpts_examples table tr th:nth-child(3),
#kpts_examples table tr td:nth-child(3) {
display: none !important;
}
#kpts_examples table tr th:nth-child(4),
#kpts_examples table tr td:nth-child(4) {
display: none !important;
}
#fix_examples_all table tr th:nth-child(4),
#fix_examples_all table tr td:nth-child(4) {
display: none !important;
}
#fix_examples_all table tr th:nth-child(5),
#fix_examples_all table tr td:nth-child(5) {
display: none !important;
}
#fix_examples_all table tr th:nth-child(6),
#fix_examples_all table tr td:nth-child(6) {
display: none !important;
}
#repose_tutorial video {
width: 70% !important;
display: block;
margin: 0 auto;
padding: 0;
}
"""
tut1_custom = f"""
<iframe style="width:100%; aspect-ratio: 12/9;"
src="https://www.youtube.com/embed/fQk7cOjSCVc"
title="Using your own image" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen>
</iframe>
"""
tut1_example = f"""
<iframe style="width:100%; aspect-ratio: 12/9;"
src="https://www.youtube.com/embed/-Dq0XTYwTHA"
title="Using your own image" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen>
</iframe>
"""
tut2_example = f"""
<iframe style="width:50%; aspect-ratio: 12/9; display:block; margin-left:auto; margin-right:auto;"
src="https://www.youtube.com/embed/y2CbzUG2uM0"
title="Using your own image" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen>
</iframe>
"""
_HEADER_ = '''
<div style="text-align: center;">
<h1><b>FoundHand: Large-Scale Domain-Specific Learning for Controllable Hand Image Generation</b></h1>
<h2 style="color: #777777;">CVPR 2025 <span style="color: #990000; font-style: italic;">Highlight</span></h2>
<style>
.link-spacing {
margin-right: 20px;
}
</style>
<p style="font-size: 15px;">
<a href="https://arthurchen0518.github.io/" class="link-spacing">Kefan Chen<sup>1,2*</sup></a>
<a href="https://chaerinmin.github.io/" class="link-spacing">Chaerin Min<sup>1*</sup></a>
<a href="https://lg-zhang.github.io/" class="link-spacing">Linguang Zhang<sup>2</sup></a>
<a href="https://shreyashampali.github.io/" class="link-spacing">Shreyas Hampali<sup>2</sup></a>
<a href="https://scholar.google.co.uk/citations?user=9HoiYnYAAAAJ&hl=en" class="link-spacing">Cem Keskin<sup>2</sup></a>
<a href="https://cs.brown.edu/people/ssrinath/" class="link-spacing">Srinath Sridhar<sup>1</sup></a>
</p>
<p style="font-size: 15px;">
<span style="display: inline-block; margin-right: 30px;"><sup>1</sup>Brown University</span>
<span style="display: inline-block;"><sup>2</sup>Meta Reality Labs</span>
</p>
<h3>
<a href='https://arxiv.org/abs/2412.02690' target='_blank' class="link-spacing">Paper</a>
<a href='https://ivl.cs.brown.edu/research/foundhand.html' target='_blank' class="link-spacing">Project Page</a>
<a href='' target='_blank' class="link-spacing">Code (Coming in June)</a>
</h3>
<p>Below are two important abilities of our model. First, we can automatically <b>fix malformed hand images</b>, following the user-provided target hand pose and area to fix. Second, we can <b>repose hand</b> given two hand images - one is the image to edit, and the other one provides target hand pose.</p>
</div>
'''
_CITE_ = r"""
<pre style="white-space: pre-wrap; margin: 0;">
@article{chen2024foundhand,
title={FoundHand: Large-Scale Domain-Specific Learning for Controllable Hand Image Generation},
author={Chen, Kefan and Min, Chaerin and Zhang, Linguang and Hampali, Shreyas and Keskin, Cem and Sridhar, Srinath},
journal={arXiv preprint arXiv:2412.02690},
year={2024}
}
</pre>
"""
_ACK_ = r"""
<pre style="white-space: pre-wrap; margin: 0;">
Part of this work was done during Kefan (Arthur) Chen’s internship at Meta Reality Lab. This work was additionally supported by NSF CAREER grant #2143576, NASA grant #80NSSC23M0075, and an Amazon Cloud Credits Award.
</pre>
"""
with gr.Blocks(css=custom_css, theme="soft") as demo:
gr.Markdown(_HEADER_)
with gr.Tab("Demo 1. Malformed Hand Correction", elem_id="fix-tab"):
fix_inpaint_mask = gr.State(value=None)
fix_original = gr.State(value=None)
fix_crop_coord = gr.State(value=None)
fix_img = gr.State(value=None)
fix_kpts = gr.State(value=None)
fix_kpts_path = gr.Textbox(visible=False)
fix_kpts_np = gr.State(value=None)
fix_ref_cond = gr.State(value=None)
fix_target_cond = gr.State(value=None)
fix_latent = gr.State(value=None)
fix_inpaint_latent = gr.State(value=None)
# tutorial video
with gr.Accordion():
gr.Markdown("""<p style="text-align: center; font-size: 20px; font-weight: bold;">Tutorial Videos of Demo 1</p>""")
with gr.Row(variant="panel"):
with gr.Column():
# gr.Video(
# "how_to_videos/subtitled_fix_hands_custom.mp4",
# label="Using your own image",
# autoplay=True,
# loop=True,
# show_label=True,
# )
gr.HTML(tut1_custom)
with gr.Column():
# gr.Video(
# "how_to_videos/subtitled_fix_hands_example.mp4",
# label="Using our example image",
# autoplay=True,
# loop=True,
# show_label=True,
# )
gr.HTML(tut1_example)
# more options
with gr.Accordion(label="More options", open=False):
gr.Markdown(
"⚠️ Currently, Number of generation > 1 could lead to out-of-memory"
)
with gr.Row():
fix_n_generation = gr.Slider(
label="Number of generations",
value=1,
minimum=1,
maximum=FIX_MAX_N,
step=1,
randomize=False,
interactive=True,
)
fix_seed = gr.Slider(
label="Seed",
value=42,
minimum=0,
maximum=10000,
step=1,
randomize=False,
interactive=True,
)
fix_cfg = gr.Slider(
label="Classifier free guidance scale",
value=3.0,
minimum=0.0,
maximum=10.0,
step=0.1,
randomize=False,
interactive=True,
)
fix_quality = gr.Slider(
label="Quality",
value=10,
minimum=1,
maximum=10,
step=1,
randomize=False,
interactive=True,
)
# main tabs
with gr.Row():
# crop & brush
with gr.Column():
gr.Markdown(
"""<p style="text-align: center; font-size: 18px; font-weight: bold;">1. Upload a malformed hand image 📥</p>"""
)
gr.Markdown(
"""<p style="text-align: center;">Optionally crop the image.<br>(Click <b>top left</b> and <b>bottom right</b> of your desired bounding box around the hand)</p>"""
)
fix_crop = gr.Image(
type="numpy",
sources=["upload", "webcam", "clipboard"],
label="Input Image",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=True,
visible=True,
image_mode="RGBA"
)
gr.Markdown(
"""<p style="text-align: center;">💡 If you crop, the model can focus on more details of the cropped area. Square crops might work better than rectangle crops.</p>"""
)
# fix_example = gr.Examples(
# fix_example_imgs,
# inputs=[fix_crop],
# examples_per_page=20,
# )
with gr.Column():
gr.Markdown(
"""<p style="text-align: center; font-size: 18px; font-weight: bold;">2. Brush wrong finger and its surrounding area</p>"""
)
gr.Markdown(
"""<p style="text-align: center;">Don't brush the entire hand!</p>"""
)
fix_ref = gr.ImageEditor(
type="numpy",
label="Image Brushing",
sources=(),
show_label=True,
height=LENGTH,
width=LENGTH,
layers=False,
transforms=("brush"),
brush=gr.Brush(
colors=["rgb(255, 255, 255)"], default_size=20
), # 204, 50, 50
image_mode="RGBA",
container=False,
interactive=True,
)
# fix_ex_brush = gr.Examples(
# fix_example_brush,
# inputs=[fix_ref],
# examples_per_page=20,
# )
# keypoint selection
with gr.Column():
gr.Markdown(
"""<p style="text-align: center; font-size: 18px; font-weight: bold;">3. Target hand pose</p>"""
)
gr.Markdown(
"""<p style="text-align: center;">Either get hand pose from Examples, or manually give hand pose (located at the bottom)</p>"""
)
fix_kp_all = gr.Image(
type="numpy",
label="Target Hand Pose",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
visible=True,
sources=(),
image_mode="RGBA"
)
# with gr.Accordion(open=True):
# fix_ex_kpts = gr.Examples(
# fix_example_kpts,
# inputs=[fix_kp_all, fix_cfg, fix_seed, fix_kpts_path],
# examples_per_page=20,
# postprocess=False,
# elem_id="kpts_examples"
# )
with gr.Accordion("[Custom data] Manually give hand pose", open=False):
gr.Markdown(
"""<p style="text-align: center;">&#9312; Tell us if this is right, left, or both hands</p>"""
)
fix_checkbox = gr.CheckboxGroup(
["Right hand", "Left hand"],
show_label=False,
interactive=False,
)
fix_kp_r_info = gr.Markdown(
"""<p style="text-align: center;">&#9313; Click 21 keypoints on the image to provide the target hand pose of <b>right hand</b>. See the \"OpenPose keypoints convention\" for guidance.</p>""",
visible=False
)
fix_kp_right = gr.Image(
type="numpy",
label="Keypoint Selection (right hand)",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
visible=False,
sources=[],
)
with gr.Row():
fix_undo_right = gr.Button(
value="Undo", interactive=False, visible=False
)
fix_reset_right = gr.Button(
value="Reset", interactive=False, visible=False
)
fix_kp_l_info = gr.Markdown(
"""<p style="text-align: center;">&#9313; Click 21 keypoints on the image to provide the target hand pose of <b>left hand</b>. See the \"OpenPose keypoints convention\" for guidance.</p>""",
visible=False
)
fix_kp_left = gr.Image(
type="numpy",
label="Keypoint Selection (left hand)",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
visible=False,
sources=[],
)
with gr.Row():
fix_undo_left = gr.Button(
value="Undo", interactive=False, visible=False
)
fix_reset_left = gr.Button(
value="Reset", interactive=False, visible=False
)
gr.Markdown(
"""<p style="text-align: left; font-weight: bold; ">OpenPose keypoints convention</p>"""
)
fix_openpose = gr.Image(
value="openpose.png",
type="numpy",
show_label=False,
height=LENGTH // 2,
width=LENGTH // 2,
interactive=False,
)
# result column
with gr.Column():
gr.Markdown(
"""<p style="text-align: center; font-size: 18px; font-weight: bold;">4. Press &quot;Run&quot; to get the corrected hand image 🎯</p>"""
)
fix_vis_mask32 = gr.Image(
type="numpy",
label=f"Visualized {opts.latent_size} Inpaint Mask",
show_label=True,
height=opts.latent_size,
width=opts.latent_size,
interactive=False,
visible=False,
)
fix_run = gr.Button(value="Run", interactive=False)
with gr.Accordion(label="Visualized (256, 256) resized, brushed image", open=False):
fix_vis_mask256 = gr.Image(
type="numpy",
show_label=False,
height=opts.image_size,
width=opts.image_size,
interactive=False,
visible=True,
)
gr.Markdown(
"""<p style="text-align: center;">⚠️ >3min and ~24GB per generation</p>"""
)
fix_result_original = gr.Gallery(
type="numpy",
label="Results on original input",
show_label=True,
height=LENGTH,
min_width=LENGTH,
columns=FIX_MAX_N,
interactive=False,
preview=True,
)
with gr.Accordion(label="Results of cropped area / Results with pose", open=False):
fix_result = gr.Gallery(
type="numpy",
label="Results",
show_label=True,
height=LENGTH,
min_width=LENGTH,
columns=FIX_MAX_N,
interactive=False,
preview=True,
)
fix_result_pose = gr.Gallery(
type="numpy",
label="Results Pose",
show_label=True,
height=LENGTH,
min_width=LENGTH,
columns=FIX_MAX_N,
interactive=False,
preview=True,
)
gr.Markdown(
"""<p style="text-align: center;">✨ Hit &quot;Clear&quot; to restart from the beginning</p>"""
)
fix_clear = gr.ClearButton()
gr.Examples(
fix_example_all,
inputs=[fix_crop, fix_ref, fix_kp_all, fix_cfg, fix_seed, fix_kpts_path],
examples_per_page=20,
postprocess=False,
elem_id="fix_examples_all",
)
# listeners
fix_crop.change(stash_original, fix_crop, fix_original) # fix_original: (real_H, real_W, 3)
fix_crop.change(stay_crop, [fix_crop, fix_crop_coord], [fix_crop_coord, fix_ref])
fix_crop.select(process_crop, [fix_crop, fix_crop_coord], [fix_crop_coord, fix_ref, fix_crop])
fix_ref.change(visualize_ref, [fix_ref], [fix_img, fix_inpaint_mask])
fix_img.change(lambda x: x, [fix_img], [fix_kp_right])
fix_img.change(lambda x: x, [fix_img], [fix_kp_left])
fix_ref.change(
enable_component, [fix_ref, fix_ref], fix_checkbox
)
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_kp_right
)
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_undo_right
)
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_reset_right
)
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_kp_left
)
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_undo_left
)
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_reset_left
)
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_run
)
fix_checkbox.select(
set_visible,
[fix_checkbox, fix_kpts, fix_img, fix_kp_right, fix_kp_left],
[
fix_kpts,
fix_kp_right,
fix_kp_left,
fix_kp_right,
fix_undo_right,
fix_reset_right,
fix_kp_left,
fix_undo_left,
fix_reset_left,
fix_kp_r_info,
fix_kp_l_info,
],
)
fix_kp_right.select(
get_kps, [fix_img, fix_kpts, gr.State("right")], [fix_kp_right, fix_kpts] # fix_img: (real_cropped_H, real_cropped_W, 3)
)
fix_undo_right.click(
undo_kps, [fix_img, fix_kpts, gr.State("right")], [fix_kp_right, fix_kpts]
)
fix_reset_right.click(
reset_kps, [fix_img, fix_kpts, gr.State("right")], [fix_kp_right, fix_kpts]
)
fix_kp_left.select(
get_kps, [fix_img, fix_kpts, gr.State("left")], [fix_kp_left, fix_kpts]
)
fix_undo_left.click(
undo_kps, [fix_img, fix_kpts, gr.State("left")], [fix_kp_left, fix_kpts]
)
fix_reset_left.click(
reset_kps, [fix_img, fix_kpts, gr.State("left")], [fix_kp_left, fix_kpts]
)
fix_kpts_path.change(read_kpts, fix_kpts_path, fix_kpts_np)
fix_inpaint_mask.change(enable_component, [fix_inpaint_mask, fix_kpts_np], fix_run)
fix_kpts_np.change(enable_component, [fix_inpaint_mask, fix_kpts_np], fix_run)
fix_run.click(
ready_sample,
[fix_ref, fix_inpaint_mask, fix_kpts, fix_kpts_np],
[
fix_ref_cond,
fix_target_cond,
fix_latent,
fix_inpaint_latent,
fix_kpts_np,
fix_vis_mask32,
fix_vis_mask256,
],
)
fix_inpaint_latent.change(
sample_inpaint,
[
fix_ref_cond,
fix_target_cond,
fix_latent,
fix_inpaint_latent,
fix_kpts_np,
fix_original,
fix_crop_coord,
fix_n_generation,
fix_seed,
fix_cfg,
fix_quality,
],
[fix_result, fix_result_pose, fix_result_original],
)
fix_clear.click(
fix_clear_all,
[],
[
fix_crop,
fix_crop_coord,
fix_ref,
fix_checkbox,
fix_kp_all,
fix_kp_right,
fix_kp_left,
fix_result,
fix_result_pose,
fix_result_original,
fix_inpaint_mask,
fix_original,
fix_img,
fix_vis_mask32,
fix_vis_mask256,
fix_kpts,
fix_kpts_np,
fix_ref_cond,
fix_target_cond,
fix_latent,
fix_inpaint_latent,
fix_kpts_path,
fix_n_generation,
fix_seed,
fix_cfg,
fix_quality,
],
)
fix_clear.click(
fix_set_unvisible,
[],
[
fix_kp_right,
fix_kp_left,
fix_kp_r_info,
fix_kp_l_info,
fix_undo_left,
fix_undo_right,
fix_reset_left,
fix_reset_right
]
)
with gr.Tab("Demo 2. Repose Hands", elem_id="repose-tab"):
# ref states
dump = gr.State(value=None)
ref_img = gr.State(value=None)
ref_im_raw = gr.State(value=None)
ref_kp_raw = gr.State(value=0)
ref_is_user = gr.State(value=True)
ref_kp_got = gr.State(value=None)
ref_manual_cond = gr.State(value=None)
ref_auto_cond = gr.State(value=None)
ref_cond = gr.State(value=None)
# target states
target_img = gr.State(value=None)
target_im_raw = gr.State(value=None)
target_kp_raw = gr.State(value=0)
target_is_user = gr.State(value=True)
target_kp_got = gr.State(value=None)
target_manual_keypts = gr.State(value=None)
target_auto_keypts = gr.State(value=None)
target_keypts = gr.State(value=None)
target_manual_cond = gr.State(value=None)
target_auto_cond = gr.State(value=None)
target_cond = gr.State(value=None)
# tutorial video
with gr.Accordion(""):
gr.Markdown("""<p style="text-align: center; font-size: 20px; font-weight: bold;">Tutorial Videos of Demo 2</p>""")
with gr.Row(variant="panel", elem_id="repose_tutorial"):
with gr.Column():
# gr.Video(
# "how_to_videos/subtitled_repose_hands.mp4",
# label="Tutorial",
# autoplay=True,
# loop=True,
# show_label=True,
# )
gr.HTML(tut2_example)
# main tabs
with gr.Row():
# ref column
with gr.Column():
gr.Markdown(
"""<p style="text-align: center; font-size: 18px; font-weight: bold;">1. Upload a hand image to repose 📥</p>"""
)
gr.Markdown(
"""<p style="text-align: center;">Optionally crop the image</p>"""
)
ref = gr.ImageEditor(
type="numpy",
label="Reference",
show_label=True,
height=LENGTH,
width=LENGTH,
brush=False,
layers=False,
crop_size="1:1",
)
gr.Examples(example_ref_imgs, [ref], examples_per_page=20)
with gr.Accordion(label="See hand pose and more options", open=False):
with gr.Tab("Automatic hand keypoints"):
ref_pose = gr.Image(
type="numpy",
label="Reference Pose",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
)
ref_use_auto = gr.Button(value="Click here to use automatic, not manual", interactive=False, visible=True)
with gr.Tab("Manual hand keypoints"):
ref_manual_checkbox_info = gr.Markdown(
"""<p style="text-align: center;"><b>Step 1.</b> Tell us if this is right, left, or both hands.</p>""",
visible=True,
)
ref_manual_checkbox = gr.CheckboxGroup(
["Right hand", "Left hand"],
show_label=False,
visible=True,
interactive=True,
)
ref_manual_kp_r_info = gr.Markdown(
"""<p style="text-align: center;"><b>Step 2.</b> Click on image to provide hand keypoints for <b>right</b> hand. See \"OpenPose Keypoint Convention\" for guidance.</p>""",
visible=False,
)
ref_manual_kp_right = gr.Image(
type="numpy",
label="Keypoint Selection (right hand)",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
visible=False,
sources=[],
)
with gr.Row():
ref_manual_undo_right = gr.Button(
value="Undo", interactive=True, visible=False
)
ref_manual_reset_right = gr.Button(
value="Reset", interactive=True, visible=False
)
ref_manual_kp_l_info = gr.Markdown(
"""<p style="text-align: center;"><b>Step 2.</b> Click on image to provide hand keypoints for <b>left</b> hand. See \"OpenPose keypoint convention\" for guidance.</p>""",
visible=False
)
ref_manual_kp_left = gr.Image(
type="numpy",
label="Keypoint Selection (left hand)",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
visible=False,
sources=[],
)
with gr.Row():
ref_manual_undo_left = gr.Button(
value="Undo", interactive=True, visible=False
)
ref_manual_reset_left = gr.Button(
value="Reset", interactive=True, visible=False
)
ref_manual_done_info = gr.Markdown(
"""<p style="text-align: center;"><b>Step 3.</b> Hit \"Done\" button to confirm.</p>""",
visible=False,
)
ref_manual_done = gr.Button(value="Done", interactive=True, visible=False)
ref_manual_pose = gr.Image(
type="numpy",
label="Reference Pose",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
visible=False
)
ref_use_manual = gr.Button(value="Click here to use manual, not automatic", interactive=True, visible=False)
ref_manual_instruct = gr.Markdown(
value="""<p style="text-align: left; font-weight: bold; ">OpenPose Keypoints Convention</p>""",
visible=True
)
ref_manual_openpose = gr.Image(
value="openpose.png",
type="numpy",
show_label=False,
height=LENGTH // 2,
width=LENGTH // 2,
interactive=False,
visible=True
)
gr.Markdown(
"""<p style="text-align: center;">Optionally flip the hand</p>"""
)
ref_flip = gr.Checkbox(
value=False, label="Flip Handedness (Reference)", interactive=False
)
# target column
with gr.Column():
gr.Markdown(
"""<p style="text-align: center; font-size: 18px; font-weight: bold;">2. Upload a hand image for target hand pose 📥</p>"""
)
gr.Markdown(
"""<p style="text-align: center;">Optionally crop the image</p>"""
)
target = gr.ImageEditor(
type="numpy",
label="Target",
show_label=True,
height=LENGTH,
width=LENGTH,
brush=False,
layers=False,
crop_size="1:1",
)
gr.Examples(example_target_imgs, [target], examples_per_page=20)
with gr.Accordion(label="See hand pose and more options", open=False):
with gr.Tab("Automatic hand keypoints"):
target_pose = gr.Image(
type="numpy",
label="Target Pose",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
)
target_use_auto = gr.Button(value="Click here to use automatic, not manual", interactive=False, visible=True)
with gr.Tab("Manual hand keypoints"):
target_manual_checkbox_info = gr.Markdown(
"""<p style="text-align: center;"><b>Step 1.</b> Tell us if this is right, left, or both hands.</p>""",
visible=True,
)
target_manual_checkbox = gr.CheckboxGroup(
["Right hand", "Left hand"],
show_label=False,
visible=True,
interactive=True,
)
target_manual_kp_r_info = gr.Markdown(
"""<p style="text-align: center;"><b>Step 2.</b> Click on image to provide hand keypoints for <b>right</b> hand. See \"OpenPose Keypoint Convention\" for guidance.</p>""",
visible=False,
)
target_manual_kp_right = gr.Image(
type="numpy",
label="Keypoint Selection (right hand)",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
visible=False,
sources=[],
)
with gr.Row():
target_manual_undo_right = gr.Button(
value="Undo", interactive=True, visible=False
)
target_manual_reset_right = gr.Button(
value="Reset", interactive=True, visible=False
)
target_manual_kp_l_info = gr.Markdown(
"""<p style="text-align: center;"><b>Step 2.</b> Click on image to provide hand keypoints for <b>left</b> hand. See \"OpenPose keypoint convention\" for guidance.</p>""",
visible=False
)
target_manual_kp_left = gr.Image(
type="numpy",
label="Keypoint Selection (left hand)",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
visible=False,
sources=[],
)
with gr.Row():
target_manual_undo_left = gr.Button(
value="Undo", interactive=True, visible=False
)
target_manual_reset_left = gr.Button(
value="Reset", interactive=True, visible=False
)
target_manual_done_info = gr.Markdown(
"""<p style="text-align: center;"><b>Step 3.</b> Hit \"Done\" button to confirm.</p>""",
visible=False,
)
target_manual_done = gr.Button(value="Done", interactive=True, visible=False)
target_manual_pose = gr.Image(
type="numpy",
label="Target Pose",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
visible=False
)
target_use_manual = gr.Button(value="Click here to use manual, not automatic", interactive=True, visible=False)
target_manual_instruct = gr.Markdown(
value="""<p style="text-align: left; font-weight: bold; ">OpenPose Keypoints Convention</p>""",
visible=True
)
target_manual_openpose = gr.Image(
value="openpose.png",
type="numpy",
show_label=False,
height=LENGTH // 2,
width=LENGTH // 2,
interactive=False,
visible=True
)
gr.Markdown(
"""<p style="text-align: center;">Optionally flip the hand</p>"""
)
target_flip = gr.Checkbox(
value=False, label="Flip Handedness (Target)", interactive=False
)
# result column
with gr.Column():
gr.Markdown(
"""<p style="text-align: center; font-size: 18px; font-weight: bold;">3. Press &quot;Run&quot; to get the reposed results 🎯</p>"""
)
run = gr.Button(value="Run", interactive=False)
gr.Markdown(
"""<p style="text-align: center;">⚠️ ~20s per generation with RTX3090. ~50s with A100. <br>(For example, if you set Number of generations as 2, it would take around 40s)</p>"""
)
results = gr.Gallery(
type="numpy",
label="Results",
show_label=True,
height=LENGTH,
min_width=LENGTH,
columns=MAX_N,
interactive=False,
preview=True,
)
with gr.Accordion(label="Results with pose", open=False):
results_pose = gr.Gallery(
type="numpy",
label="Results Pose",
show_label=True,
height=LENGTH,
min_width=LENGTH,
columns=MAX_N,
interactive=False,
preview=True,
)
gr.Markdown(
"""<p style="text-align: center;">✨ Hit &quot;Clear&quot; to restart from the beginning</p>"""
)
clear = gr.ClearButton()
# more options
with gr.Accordion(label="More options", open=False):
with gr.Row():
n_generation = gr.Slider(
label="Number of generations",
value=1,
minimum=1,
maximum=MAX_N,
step=1,
randomize=False,
interactive=True,
)
seed = gr.Slider(
label="Seed",
value=42,
minimum=0,
maximum=10000,
step=1,
randomize=False,
interactive=True,
)
cfg = gr.Slider(
label="Classifier free guidance scale",
value=2.5,
minimum=0.0,
maximum=10.0,
step=0.1,
randomize=False,
interactive=True,
)
# reference listeners
ref.change(prepare_anno, [ref, ref_is_user], [ref_im_raw, ref_kp_raw])
ref_kp_raw.change(lambda x: x, ref_im_raw, ref_manual_kp_right)
ref_kp_raw.change(lambda x: x, ref_im_raw, ref_manual_kp_left)
ref_kp_raw.change(get_ref_anno, [ref_im_raw, ref_kp_raw], [ref_img, ref_pose, ref_auto_cond, ref, ref_is_user])
ref_pose.change(enable_component, [ref_kp_raw, ref_pose], ref_use_auto)
ref_pose.change(enable_component, [ref_img, ref_pose], ref_flip)
ref_auto_cond.change(lambda x: x, ref_auto_cond, ref_cond)
ref_use_auto.click(lambda x: x, ref_auto_cond, ref_cond)
ref_use_auto.click(lambda x: gr.Info("Automatic hand keypoints will be used for 'Reference'", duration=3))
ref_manual_checkbox.select(
set_visible,
[ref_manual_checkbox, ref_kp_got, ref_im_raw, ref_manual_kp_right, ref_manual_kp_left, ref_manual_done],
[
ref_kp_got,
ref_manual_kp_right,
ref_manual_kp_left,
ref_manual_kp_right,
ref_manual_undo_right,
ref_manual_reset_right,
ref_manual_kp_left,
ref_manual_undo_left,
ref_manual_reset_left,
ref_manual_kp_r_info,
ref_manual_kp_l_info,
ref_manual_done,
ref_manual_done_info
]
)
ref_manual_kp_right.select(
get_kps, [ref_im_raw, ref_kp_got, gr.State("right")], [ref_manual_kp_right, ref_kp_got]
)
ref_manual_undo_right.click(
undo_kps, [ref_im_raw, ref_kp_got, gr.State("right")], [ref_manual_kp_right, ref_kp_got]
)
ref_manual_reset_right.click(
reset_kps, [ref_im_raw, ref_kp_got, gr.State("right")], [ref_manual_kp_right, ref_kp_got]
)
ref_manual_kp_left.select(
get_kps, [ref_im_raw, ref_kp_got, gr.State("left")], [ref_manual_kp_left, ref_kp_got]
)
ref_manual_undo_left.click(
undo_kps, [ref_im_raw, ref_kp_got, gr.State("left")], [ref_manual_kp_left, ref_kp_got]
)
ref_manual_reset_left.click(
reset_kps, [ref_im_raw, ref_kp_got, gr.State("left")], [ref_manual_kp_left, ref_kp_got]
)
ref_manual_done.click(visible_component, [gr.State(0), ref_manual_pose], ref_manual_pose)
ref_manual_done.click(visible_component, [gr.State(0), ref_use_manual], ref_use_manual)
ref_manual_done.click(get_ref_anno, [ref_im_raw, ref_kp_got], [ref_img, ref_manual_pose, ref_manual_cond])
ref_manual_pose.change(enable_component, [ref_manual_pose, ref_manual_pose], ref_manual_done)
ref_manual_pose.change(enable_component, [ref_img, ref_manual_pose], ref_flip)
ref_manual_cond.change(lambda x: x, ref_manual_cond, ref_cond)
ref_use_manual.click(lambda x: x, ref_manual_cond, ref_cond)
ref_use_manual.click(lambda x: gr.Info("Manual hand keypoints will be used for 'Reference'", duration=3))
ref_flip.select(
flip_hand,
[ref, ref_im_raw, ref_pose, ref_manual_pose, ref_manual_kp_right, ref_manual_kp_left, ref_cond, ref_auto_cond, ref_manual_cond],
[ref, ref_im_raw, ref_pose, ref_manual_pose, ref_manual_kp_right, ref_manual_kp_left, ref_cond, ref_auto_cond, ref_manual_cond]
)
# target listeners
target.change(prepare_anno, [target, target_is_user], [target_im_raw, target_kp_raw])
target_kp_raw.change(lambda x:x, target_im_raw, target_manual_kp_right)
target_kp_raw.change(lambda x:x, target_im_raw, target_manual_kp_left)
target_kp_raw.change(get_target_anno, [target_im_raw, target_kp_raw], [target_img, target_pose, target_auto_cond, target_auto_keypts, target, target_is_user])
target_pose.change(enable_component, [target_kp_raw, target_pose], target_use_auto)
target_pose.change(enable_component, [target_img, target_pose], target_flip)
target_auto_cond.change(lambda x: x, target_auto_cond, target_cond)
target_auto_keypts.change(lambda x: x, target_auto_keypts, target_keypts)
target_use_auto.click(lambda x: x, target_auto_cond, target_cond)
target_use_auto.click(lambda x: x, target_auto_keypts, target_keypts)
target_use_auto.click(lambda x: gr.Info("Automatic hand keypoints will be used for 'Target'", duration=3))
target_manual_checkbox.select(
set_visible,
[target_manual_checkbox, target_kp_got, target_im_raw, target_manual_kp_right, target_manual_kp_left, target_manual_done],
[
target_kp_got,
target_manual_kp_right,
target_manual_kp_left,
target_manual_kp_right,
target_manual_undo_right,
target_manual_reset_right,
target_manual_kp_left,
target_manual_undo_left,
target_manual_reset_left,
target_manual_kp_r_info,
target_manual_kp_l_info,
target_manual_done,
target_manual_done_info
]
)
target_manual_kp_right.select(
get_kps, [target_im_raw, target_kp_got, gr.State("right")], [target_manual_kp_right, target_kp_got]
)
target_manual_undo_right.click(
undo_kps, [target_im_raw, target_kp_got, gr.State("right")], [target_manual_kp_right, target_kp_got]
)
target_manual_reset_right.click(
reset_kps, [target_im_raw, target_kp_got, gr.State("right")], [target_manual_kp_right, target_kp_got]
)
target_manual_kp_left.select(
get_kps, [target_im_raw, target_kp_got, gr.State("left")], [target_manual_kp_left, target_kp_got]
)
target_manual_undo_left.click(
undo_kps, [target_im_raw, target_kp_got, gr.State("left")], [target_manual_kp_left, target_kp_got]
)
target_manual_reset_left.click(
reset_kps, [target_im_raw, target_kp_got, gr.State("left")], [target_manual_kp_left, target_kp_got]
)
target_manual_done.click(visible_component, [gr.State(0), target_manual_pose], target_manual_pose)
target_manual_done.click(visible_component, [gr.State(0), target_use_manual], target_use_manual)
target_manual_done.click(get_target_anno, [target_im_raw, target_kp_got], [target_img, target_manual_pose, target_manual_cond, target_manual_keypts])
target_manual_pose.change(enable_component, [target_manual_pose, target_manual_pose], target_manual_done)
target_manual_pose.change(enable_component, [target_img, target_manual_pose], target_flip)
target_manual_cond.change(lambda x: x, target_manual_cond, target_cond)
target_manual_keypts.change(lambda x: x, target_manual_keypts, target_keypts)
target_use_manual.click(lambda x: x, target_manual_cond, target_cond)
target_use_manual.click(lambda x: x, target_manual_keypts, target_keypts)
target_use_manual.click(lambda x: gr.Info("Manual hand keypoints will be used for 'Reference'", duration=3))
target_flip.select(
flip_hand,
[target, target_im_raw, target_pose, target_manual_pose, target_manual_kp_right, target_manual_kp_left, target_cond, target_auto_cond, target_manual_cond, target_keypts, target_auto_keypts, target_manual_keypts],
[target, target_im_raw, target_pose, target_manual_pose, target_manual_kp_right, target_manual_kp_left, target_cond, target_auto_cond, target_manual_cond, target_keypts, target_auto_keypts, target_manual_keypts],
)
# run listerners
ref_cond.change(enable_component, [ref_cond, target_cond], run)
target_cond.change(enable_component, [ref_cond, target_cond], run)
run.click(
sample_diff,
[ref_cond, target_cond, target_keypts, n_generation, seed, cfg],
[results, results_pose],
)
clear.click(
clear_all,
[],
[
ref,
ref_manual_checkbox,
ref_manual_kp_right,
ref_manual_kp_left,
ref_img,
ref_pose,
ref_manual_pose,
ref_cond,
ref_flip,
target,
target_keypts,
target_manual_checkbox,
target_manual_kp_right,
target_manual_kp_left,
target_img,
target_pose,
target_manual_pose,
target_cond,
target_flip,
results,
results_pose,
n_generation,
seed,
cfg,
ref_kp_raw,
],
)
clear.click(
set_unvisible,
[],
[
ref_manual_kp_l_info,
ref_manual_kp_r_info,
ref_manual_kp_left,
ref_manual_kp_right,
ref_manual_undo_left,
ref_manual_undo_right,
ref_manual_reset_left,
ref_manual_reset_right,
ref_manual_done,
ref_manual_done_info,
ref_manual_pose,
ref_use_manual,
target_manual_kp_l_info,
target_manual_kp_r_info,
target_manual_kp_left,
target_manual_kp_right,
target_manual_undo_left,
target_manual_undo_right,
target_manual_reset_left,
target_manual_reset_right,
target_manual_done,
target_manual_done_info,
target_manual_pose,
target_use_manual,
]
)
gr.Markdown("<h1>Acknowledgement</h1>")
gr.Markdown(_ACK_)
gr.Markdown("<h1>Trouble Shooting</h1>")
gr.Markdown("If error persists, please try the following steps:<br>1. Refresh the page and try again.<br>2. The issue might be due to compatibility with HuggingFace or GPU memory limitations. We recommend cloning this repository and trying it with your own GPU if possible.<br>3. Kindly leave a message on our HuggingFace Spaces Community tab (located at the top right), on our GitHub repository's Issues page, or send us an email. We are happy to help you as soon as possible.")
gr.Markdown("If the result is not satisfactory:<br>1. Try changing either <b>Classifier Free Guidance Scale</b> or <b>Seed</b>, that can be found at \"More Options\".")
gr.Markdown("<h1>Citation</h1>")
gr.Markdown(
"""<p style="text-align: left;">If this was useful, please cite us! ❤️</p>"""
)
gr.Markdown(_CITE_)
# print("Ready to launch..")
# _, _, shared_url = demo.queue().launch(
# share=True, server_name="0.0.0.0", server_port=7739
# )
demo.launch(share=True)