Spaces:
Sleeping
Sleeping
File size: 56,907 Bytes
9ffd621 49f816b 4c2ca7f da82f44 49f816b b31118d 49f816b b2cedf5 49f816b b2cedf5 49f816b 50fb683 49f816b 5b1e740 49f816b 735c5d1 49f816b e1163fb 49f816b 385c0f2 32fa016 b2cedf5 735c5d1 49f816b 6097648 2b83923 49f816b 702c185 08b1d2f 702c185 49f816b 702c185 0ae1eb4 32fa016 702c185 49f816b 702c185 49f816b 702c185 49f816b d77d40d 49f816b b61bdbb 49f816b 5b1e740 49f816b b61bdbb 7df9bdd 49f816b 5b1e740 49f816b 5b1e740 49f816b d903dd2 49f816b 2b83923 49f816b 2b83923 49f816b 5b1e740 49f816b 2b83923 49f816b 2b83923 49f816b 2b83923 49f816b 5b1e740 49f816b 8ed2e2f 49f816b 5b1e740 49f816b 7eb1889 49f816b 7eb1889 49f816b 7eb1889 49f816b 2b83923 49f816b dec48e7 85a61a0 dec48e7 85a61a0 dec48e7 49f816b dec48e7 49f816b 2b83923 49f816b fad5598 fe8403c 49f816b 85a61a0 8579aa2 85a61a0 a3584ea e277aac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 |
import os
import torch
from dataclasses import dataclass
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import cv2
import mediapipe as mp
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
import vqvae
import vit
from typing import Literal
from diffusion import create_diffusion
from utils import scale_keypoint, keypoint_heatmap, check_keypoints_validity
from segment_hoi import init_sam
from io import BytesIO
from PIL import Image
import random
from copy import deepcopy
from typing import Optional
import requests
from huggingface_hub import hf_hub_download
import spaces
MAX_N = 6
FIX_MAX_N = 6
placeholder = cv2.cvtColor(cv2.imread("placeholder.png"), cv2.COLOR_BGR2RGB)
NEW_MODEL = True
MODEL_EPOCH = 6
REF_POSE_MASK = True
def set_seed(seed):
seed = int(seed)
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
# if torch.cuda.is_available():
device = "cuda"
# else:
# device = "cpu"
def remove_prefix(text, prefix):
if text.startswith(prefix):
return text[len(prefix) :]
return text
def unnormalize(x):
return (((x + 1) / 2) * 255).astype(np.uint8)
def visualize_hand(all_joints, img, side=["right", "left"], n_avail_joints=21):
# Define the connections between joints for drawing lines and their corresponding colors
connections = [
((0, 1), "red"),
((1, 2), "green"),
((2, 3), "blue"),
((3, 4), "purple"),
((0, 5), "orange"),
((5, 6), "pink"),
((6, 7), "brown"),
((7, 8), "cyan"),
((0, 9), "yellow"),
((9, 10), "magenta"),
((10, 11), "lime"),
((11, 12), "indigo"),
((0, 13), "olive"),
((13, 14), "teal"),
((14, 15), "navy"),
((15, 16), "gray"),
((0, 17), "lavender"),
((17, 18), "silver"),
((18, 19), "maroon"),
((19, 20), "fuchsia"),
]
H, W, C = img.shape
# Create a figure and axis
plt.figure()
ax = plt.gca()
# Plot joints as points
ax.imshow(img)
start_is = []
if "right" in side:
start_is.append(0)
if "left" in side:
start_is.append(21)
for start_i in start_is:
joints = all_joints[start_i : start_i + n_avail_joints]
if len(joints) == 1:
ax.scatter(joints[0][0], joints[0][1], color="red", s=10)
else:
for connection, color in connections[: len(joints) - 1]:
joint1 = joints[connection[0]]
joint2 = joints[connection[1]]
ax.plot([joint1[0], joint2[0]], [joint1[1], joint2[1]], color=color)
ax.set_xlim([0, W])
ax.set_ylim([0, H])
ax.grid(False)
ax.set_axis_off()
ax.invert_yaxis()
# plt.subplots_adjust(wspace=0.01)
# plt.show()
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight", pad_inches=0)
plt.close()
# Convert BytesIO object to numpy array
buf.seek(0)
img_pil = Image.open(buf)
img_pil = img_pil.resize((H, W))
numpy_img = np.array(img_pil)
return numpy_img
def mask_image(image, mask, color=[0, 0, 0], alpha=0.6, transparent=True):
"""Overlay mask on image for visualization purpose.
Args:
image (H, W, 3) or (H, W): input image
mask (H, W): mask to be overlaid
color: the color of overlaid mask
alpha: the transparency of the mask
"""
out = deepcopy(image)
img = deepcopy(image)
img[mask == 1] = color
if transparent:
out = cv2.addWeighted(img, alpha, out, 1 - alpha, 0, out)
else:
out = img
return out
def scale_keypoint(keypoint, original_size, target_size):
"""Scale a keypoint based on the resizing of the image."""
keypoint_copy = keypoint.copy()
keypoint_copy[:, 0] *= target_size[0] / original_size[0]
keypoint_copy[:, 1] *= target_size[1] / original_size[1]
return keypoint_copy
print("Configure...")
@dataclass
class HandDiffOpts:
run_name: str = "ViT_256_handmask_heatmap_nvs_b25_lr1e-5"
sd_path: str = "/users/kchen157/scratch/weights/SD/sd-v1-4.ckpt"
log_dir: str = "/users/kchen157/scratch/log"
data_root: str = "/users/kchen157/data/users/kchen157/dataset/handdiff"
image_size: tuple = (256, 256)
latent_size: tuple = (32, 32)
latent_dim: int = 4
mask_bg: bool = False
kpts_form: str = "heatmap"
n_keypoints: int = 42
n_mask: int = 1
noise_steps: int = 1000
test_sampling_steps: int = 250
ddim_steps: int = 100
ddim_discretize: str = "uniform"
ddim_eta: float = 0.0
beta_start: float = 8.5e-4
beta_end: float = 0.012
latent_scaling_factor: float = 0.18215
cfg_pose: float = 5.0
cfg_appearance: float = 3.5
batch_size: int = 25
lr: float = 1e-5
max_epochs: int = 500
log_every_n_steps: int = 100
limit_val_batches: int = 1
n_gpu: int = 8
num_nodes: int = 1
precision: str = "16-mixed"
profiler: str = "simple"
swa_epoch_start: int = 10
swa_lrs: float = 1e-3
num_workers: int = 10
n_val_samples: int = 4
# load models
token = os.getenv("HF_TOKEN")
if NEW_MODEL:
opts = HandDiffOpts()
if MODEL_EPOCH == 7:
model_path = './DINO_EMA_11M_b50_lr1e-5_epoch7_step380k.ckpt'
elif MODEL_EPOCH == 6:
# model_path = "./DINO_EMA_11M_b50_lr1e-5_epoch6_step320k.ckpt"
model_path = hf_hub_download(repo_id="Chaerin5/FoundHand-weights", filename="DINO_EMA_11M_b50_lr1e-5_epoch6_step320k.ckpt", token=token)
elif MODEL_EPOCH == 4:
model_path = "./DINO_EMA_11M_b50_lr1e-5_epoch4_step210k.ckpt"
elif MODEL_EPOCH == 10:
model_path = "./DINO_EMA_11M_b50_lr1e-5_epoch10_step550k.ckpt"
else:
raise ValueError(f"new model epoch should be either 6 or 7, got {MODEL_EPOCH}")
# vae_path = './vae-ft-mse-840000-ema-pruned.ckpt'
vae_path = hf_hub_download(repo_id="Chaerin5/FoundHand-weights", filename="vae-ft-mse-840000-ema-pruned.ckpt", token=token)
# sd_path = './sd-v1-4.ckpt'
print('Load diffusion model...')
diffusion = create_diffusion(str(opts.test_sampling_steps))
model = vit.DiT_XL_2(
input_size=opts.latent_size[0],
latent_dim=opts.latent_dim,
in_channels=opts.latent_dim+opts.n_keypoints+opts.n_mask,
learn_sigma=True,
).to(device)
# ckpt_state_dict = torch.load(model_path)['model_state_dict']
ckpt_state_dict = torch.load(model_path, map_location='cpu')['ema_state_dict']
missing_keys, extra_keys = model.load_state_dict(ckpt_state_dict, strict=False)
model = model.to(device)
model.eval()
print(missing_keys, extra_keys)
assert len(missing_keys) == 0
vae_state_dict = torch.load(vae_path, map_location='cpu')['state_dict']
print(f"vae_state_dict encoder dtype: {vae_state_dict['encoder.conv_in.weight'].dtype}")
autoencoder = vqvae.create_model(3, 3, opts.latent_dim).eval().requires_grad_(False)
print(f"autoencoder encoder dtype: {next(autoencoder.encoder.parameters()).dtype}")
print(f"encoder before load_state_dict parameters min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
print(f"encoder before load_state_dict parameters max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
missing_keys, extra_keys = autoencoder.load_state_dict(vae_state_dict, strict=False)
print(f"encoder after load_state_dict parameters min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
print(f"encoder after load_state_dict parameters max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
autoencoder = autoencoder.to(device)
autoencoder.eval()
print(f"encoder after eval() min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
print(f"encoder after eval() max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
print(f"autoencoder encoder after eval() dtype: {next(autoencoder.encoder.parameters()).dtype}")
assert len(missing_keys) == 0
# else:
# opts = HandDiffOpts()
# model_path = './finetune_epoch=5-step=130000.ckpt'
# sd_path = './sd-v1-4.ckpt'
# print('Load diffusion model...')
# diffusion = create_diffusion(str(opts.test_sampling_steps))
# model = vit.DiT_XL_2(
# input_size=opts.latent_size[0],
# latent_dim=opts.latent_dim,
# in_channels=opts.latent_dim+opts.n_keypoints+opts.n_mask,
# learn_sigma=True,
# ).to(device)
# ckpt_state_dict = torch.load(model_path)['state_dict']
# dit_state_dict = {remove_prefix(k, 'diffusion_backbone.'): v for k, v in ckpt_state_dict.items() if k.startswith('diffusion_backbone')}
# vae_state_dict = {remove_prefix(k, 'autoencoder.'): v for k, v in ckpt_state_dict.items() if k.startswith('autoencoder')}
# missing_keys, extra_keys = model.load_state_dict(dit_state_dict, strict=False)
# model.eval()
# assert len(missing_keys) == 0 and len(extra_keys) == 0
# autoencoder = vqvae.create_model(3, 3, opts.latent_dim).eval().requires_grad_(False).to(device)
# missing_keys, extra_keys = autoencoder.load_state_dict(vae_state_dict, strict=False)
# autoencoder.eval()
# assert len(missing_keys) == 0 and len(extra_keys) == 0
sam_path = hf_hub_download(repo_id="Chaerin5/FoundHand-weights", filename="sam_vit_h_4b8939.pth", token=token)
sam_predictor = init_sam(ckpt_path=sam_path, device='cpu')
print("Mediapipe hand detector and SAM ready...")
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(
static_image_mode=True, # Use False if image is part of a video stream
max_num_hands=2, # Maximum number of hands to detect
min_detection_confidence=0.1,
)
def get_ref_anno(ref):
if ref is None:
return (
None,
None,
None,
None,
None,
)
missing_keys, extra_keys = autoencoder.load_state_dict(vae_state_dict, strict=False)
img = ref["composite"][..., :3]
img = cv2.resize(img, opts.image_size, interpolation=cv2.INTER_AREA)
keypts = np.zeros((42, 2))
if REF_POSE_MASK:
mp_pose = hands.process(img)
detected = np.array([0, 0])
start_idx = 0
if mp_pose.multi_hand_landmarks:
# handedness is flipped assuming the input image is mirrored in MediaPipe
for hand_landmarks, handedness in zip(
mp_pose.multi_hand_landmarks, mp_pose.multi_handedness
):
# actually right hand
if handedness.classification[0].label == "Left":
start_idx = 0
detected[0] = 1
# actually left hand
elif handedness.classification[0].label == "Right":
start_idx = 21
detected[1] = 1
for i, landmark in enumerate(hand_landmarks.landmark):
keypts[start_idx + i] = [
landmark.x * opts.image_size[1],
landmark.y * opts.image_size[0],
]
sam_predictor.set_image(img)
l = keypts[:21].shape[0]
if keypts[0].sum() != 0 and keypts[21].sum() != 0:
input_point = np.array([keypts[0], keypts[21]])
input_label = np.array([1, 1])
elif keypts[0].sum() != 0:
input_point = np.array(keypts[:1])
input_label = np.array([1])
elif keypts[21].sum() != 0:
input_point = np.array(keypts[21:22])
input_label = np.array([1])
masks, _, _ = sam_predictor.predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
hand_mask = masks[0]
masked_img = img * hand_mask[..., None] + 255 * (1 - hand_mask[..., None])
ref_pose = visualize_hand(keypts, masked_img)
else:
raise gr.Error("No hands detected in the reference image.")
else:
hand_mask = np.zeros_like(img[:,:, 0])
ref_pose = np.zeros_like(img)
print(f"keypts.max(): {keypts.max()}, keypts.min(): {keypts.min()}")
def make_ref_cond(
img,
keypts,
hand_mask,
device="cuda",
target_size=(256, 256),
latent_size=(32, 32),
):
image_transform = Compose(
[
ToTensor(),
Resize(target_size),
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
image = image_transform(img)
kpts_valid = check_keypoints_validity(keypts, target_size)
heatmaps = torch.tensor(
keypoint_heatmap(
scale_keypoint(keypts, target_size, latent_size), latent_size, var=1.0
)
* kpts_valid[:, None, None],
dtype=torch.float,
)[None, ...]
mask = torch.tensor(
cv2.resize(
hand_mask.astype(int),
dsize=latent_size,
interpolation=cv2.INTER_NEAREST,
),
dtype=torch.float,
).unsqueeze(0)[None, ...]
return image[None, ...], heatmaps, mask
print(f"img.max(): {img.max()}, img.min(): {img.min()}")
image, heatmaps, mask = make_ref_cond(
img,
keypts,
hand_mask,
device="cuda",
target_size=opts.image_size,
latent_size=opts.latent_size,
)
print(f"image.max(): {image.max()}, image.min(): {image.min()}")
print(f"opts.latent_scaling_factor: {opts.latent_scaling_factor}")
print(f"autoencoder encoder before operating max: {min([p.min() for p in autoencoder.encoder.parameters()])}")
print(f"autoencoder encoder before operating min: {max([p.max() for p in autoencoder.encoder.parameters()])}")
print(f"autoencoder encoder before operating dtype: {next(autoencoder.encoder.parameters()).dtype}")
latent = opts.latent_scaling_factor * autoencoder.encode(image).sample()
print(f"latent.max(): {latent.max()}, latent.min(): {latent.min()}")
if not REF_POSE_MASK:
heatmaps = torch.zeros_like(heatmaps)
mask = torch.zeros_like(mask)
print(f"heatmaps.max(): {heatmaps.max()}, heatmaps.min(): {heatmaps.min()}")
print(f"mask.max(): {mask.max()}, mask.min(): {mask.min()}")
ref_cond = torch.cat([latent, heatmaps, mask], 1)
print(f"ref_cond.max(): {ref_cond.max()}, ref_cond.min(): {ref_cond.min()}")
return img, ref_pose, ref_cond
def get_target_anno(target):
if target is None:
return (
gr.State.update(value=None),
gr.Image.update(value=None),
gr.State.update(value=None),
gr.State.update(value=None),
)
pose_img = target["composite"][..., :3]
pose_img = cv2.resize(pose_img, opts.image_size, interpolation=cv2.INTER_AREA)
# detect keypoints
mp_pose = hands.process(pose_img)
target_keypts = np.zeros((42, 2))
detected = np.array([0, 0])
start_idx = 0
if mp_pose.multi_hand_landmarks:
# handedness is flipped assuming the input image is mirrored in MediaPipe
for hand_landmarks, handedness in zip(
mp_pose.multi_hand_landmarks, mp_pose.multi_handedness
):
# actually right hand
if handedness.classification[0].label == "Left":
start_idx = 0
detected[0] = 1
# actually left hand
elif handedness.classification[0].label == "Right":
start_idx = 21
detected[1] = 1
for i, landmark in enumerate(hand_landmarks.landmark):
target_keypts[start_idx + i] = [
landmark.x * opts.image_size[1],
landmark.y * opts.image_size[0],
]
target_pose = visualize_hand(target_keypts, pose_img)
kpts_valid = check_keypoints_validity(target_keypts, opts.image_size)
target_heatmaps = torch.tensor(
keypoint_heatmap(
scale_keypoint(target_keypts, opts.image_size, opts.latent_size),
opts.latent_size,
var=1.0,
)
* kpts_valid[:, None, None],
dtype=torch.float,
# device=device,
)[None, ...]
target_cond = torch.cat(
[target_heatmaps, torch.zeros_like(target_heatmaps)[:, :1]], 1
)
else:
raise gr.Error("No hands detected in the target image.")
return pose_img, target_pose, target_cond, target_keypts
def get_mask_inpaint(ref):
inpaint_mask = np.array(ref["layers"][0])[..., -1]
inpaint_mask = cv2.resize(
inpaint_mask, opts.image_size, interpolation=cv2.INTER_AREA
)
inpaint_mask = (inpaint_mask >= 128).astype(np.uint8)
return inpaint_mask
def visualize_ref(crop, brush):
if crop is None or brush is None:
return None
inpainted = brush["layers"][0][..., -1]
img = crop["background"][..., :3]
img = cv2.resize(img, inpainted.shape[::-1], interpolation=cv2.INTER_AREA)
mask = inpainted < 128
# img = img.astype(np.int32)
# img[mask, :] = img[mask, :] - 50
# img[np.any(img<0, axis=-1)]=0
# img = img.astype(np.uint8)
img = mask_image(img, mask)
return img
def get_kps(img, keypoints, side: Literal["right", "left"], evt: gr.SelectData):
if keypoints is None:
keypoints = [[], []]
kps = np.zeros((42, 2))
if side == "right":
if len(keypoints[0]) == 21:
gr.Info("21 keypoints for right hand already selected. Try reset if something looks wrong.")
else:
keypoints[0].append(list(evt.index))
len_kps = len(keypoints[0])
kps[:len_kps] = np.array(keypoints[0])
elif side == "left":
if len(keypoints[1]) == 21:
gr.Info("21 keypoints for left hand already selected. Try reset if something looks wrong.")
else:
keypoints[1].append(list(evt.index))
len_kps = len(keypoints[1])
kps[21 : 21 + len_kps] = np.array(keypoints[1])
vis_hand = visualize_hand(kps, img, side, len_kps)
return vis_hand, keypoints
def undo_kps(img, keypoints, side: Literal["right", "left"]):
if keypoints is None:
return img, None
kps = np.zeros((42, 2))
if side == "right":
if len(keypoints[0]) == 0:
return img, keypoints
keypoints[0].pop()
len_kps = len(keypoints[0])
kps[:len_kps] = np.array(keypoints[0])
elif side == "left":
if len(keypoints[1]) == 0:
return img, keypoints
keypoints[1].pop()
len_kps = len(keypoints[1])
kps[21 : 21 + len_kps] = np.array(keypoints[1])
vis_hand = visualize_hand(kps, img, side, len_kps)
return vis_hand, keypoints
def reset_kps(img, keypoints, side: Literal["right", "left"]):
if keypoints is None:
return img, None
if side == "right":
keypoints[0] = []
elif side == "left":
keypoints[1] = []
return img, keypoints
@spaces.GPU(duration=60)
def sample_diff(ref_cond, target_cond, target_keypts, num_gen, seed, cfg):
set_seed(seed)
z = torch.randn(
(num_gen, opts.latent_dim, opts.latent_size[0], opts.latent_size[1]),
device=device,
)
print(f"z.device: {z.device}")
target_cond = target_cond.repeat(num_gen, 1, 1, 1).to(z.device)
ref_cond = ref_cond.repeat(num_gen, 1, 1, 1).to(z.device)
print(f"target_cond.max(): {target_cond.max()}, target_cond.min(): {target_cond.min()}")
print(f"ref_cond.max(): {ref_cond.max()}, ref_cond.min(): {ref_cond.min()}")
# novel view synthesis mode = off
nvs = torch.zeros(num_gen, dtype=torch.int, device=device)
z = torch.cat([z, z], 0)
model_kwargs = dict(
target_cond=torch.cat([target_cond, torch.zeros_like(target_cond)]),
ref_cond=torch.cat([ref_cond, torch.zeros_like(ref_cond)]),
nvs=torch.cat([nvs, 2 * torch.ones_like(nvs)]),
cfg_scale=cfg,
)
samples, _ = diffusion.p_sample_loop(
model.forward_with_cfg,
z.shape,
z,
clip_denoised=False,
model_kwargs=model_kwargs,
progress=True,
device=device,
).chunk(2)
sampled_images = autoencoder.decode(samples / opts.latent_scaling_factor)
sampled_images = torch.clamp(sampled_images, min=-1.0, max=1.0)
sampled_images = unnormalize(sampled_images.permute(0, 2, 3, 1).cpu().numpy())
results = []
results_pose = []
for i in range(MAX_N):
if i < num_gen:
results.append(sampled_images[i])
results_pose.append(visualize_hand(target_keypts, sampled_images[i]))
else:
results.append(placeholder)
results_pose.append(placeholder)
print(f"results[0].max(): {results[0].max()}")
return results, results_pose
# @spaces.GPU(duration=120)
def ready_sample(img_ori, inpaint_mask, keypts):
img = cv2.resize(img_ori[..., :3], opts.image_size, interpolation=cv2.INTER_AREA)
sam_predictor.set_image(img)
if len(keypts[0]) == 0:
keypts[0] = np.zeros((21, 2))
elif len(keypts[0]) == 21:
keypts[0] = np.array(keypts[0], dtype=np.float32)
else:
gr.Info("Number of right hand keypoints should be either 0 or 21.")
return None, None
if len(keypts[1]) == 0:
keypts[1] = np.zeros((21, 2))
elif len(keypts[1]) == 21:
keypts[1] = np.array(keypts[1], dtype=np.float32)
else:
gr.Info("Number of left hand keypoints should be either 0 or 21.")
return None, None
keypts = np.concatenate(keypts, axis=0)
keypts = scale_keypoint(keypts, (LENGTH, LENGTH), opts.image_size)
# if keypts[0].sum() != 0 and keypts[21].sum() != 0:
# input_point = np.array([keypts[0], keypts[21]])
# # input_point = keypts
# input_label = np.array([1, 1])
# # input_label = np.ones_like(input_point[:, 0])
# elif keypts[0].sum() != 0:
# input_point = np.array(keypts[:1])
# # input_point = keypts[:21]
# input_label = np.array([1])
# # input_label = np.ones_like(input_point[:21, 0])
# elif keypts[21].sum() != 0:
# input_point = np.array(keypts[21:22])
# # input_point = keypts[21:]
# input_label = np.array([1])
# # input_label = np.ones_like(input_point[21:, 0])
box_shift_ratio = 0.5
box_size_factor = 1.2
if keypts[0].sum() != 0 and keypts[21].sum() != 0:
input_point = np.array(keypts)
input_box = np.stack([keypts.min(axis=0), keypts.max(axis=0)])
elif keypts[0].sum() != 0:
input_point = np.array(keypts[:21])
input_box = np.stack([keypts[:21].min(axis=0), keypts[:21].max(axis=0)])
elif keypts[21].sum() != 0:
input_point = np.array(keypts[21:])
input_box = np.stack([keypts[21:].min(axis=0), keypts[21:].max(axis=0)])
else:
raise ValueError(
"Something wrong. If no hand detected, it should not reach here."
)
input_label = np.ones_like(input_point[:, 0]).astype(np.int32)
box_trans = input_box[0] * box_shift_ratio + input_box[1] * (1 - box_shift_ratio)
input_box = ((input_box - box_trans) * box_size_factor + box_trans).reshape(-1)
masks, _, _ = sam_predictor.predict(
point_coords=input_point,
point_labels=input_label,
box=input_box[None, :],
multimask_output=False,
)
hand_mask = masks[0]
inpaint_latent_mask = torch.tensor(
cv2.resize(
inpaint_mask, dsize=opts.latent_size, interpolation=cv2.INTER_NEAREST
),
dtype=torch.float,
# device=device,
).unsqueeze(0)[None, ...]
def make_ref_cond(
img,
keypts,
hand_mask,
device=device,
target_size=(256, 256),
latent_size=(32, 32),
):
image_transform = Compose(
[
ToTensor(),
Resize(target_size),
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
image = image_transform(img)
kpts_valid = check_keypoints_validity(keypts, target_size)
heatmaps = torch.tensor(
keypoint_heatmap(
scale_keypoint(keypts, target_size, latent_size), latent_size, var=1.0
)
* kpts_valid[:, None, None],
dtype=torch.float,
# device=device,
)[None, ...]
mask = torch.tensor(
cv2.resize(
hand_mask.astype(int),
dsize=latent_size,
interpolation=cv2.INTER_NEAREST,
),
dtype=torch.float,
# device=device,
).unsqueeze(0)[None, ...]
return image[None, ...], heatmaps, mask
image, heatmaps, mask = make_ref_cond(
img,
keypts,
hand_mask * (1 - inpaint_mask),
device=device,
target_size=opts.image_size,
latent_size=opts.latent_size,
)
latent = opts.latent_scaling_factor * autoencoder.encode(image).sample()
target_cond = torch.cat([heatmaps, torch.zeros_like(mask)], 1)
ref_cond = torch.cat([latent, heatmaps, mask], 1)
ref_cond = torch.zeros_like(ref_cond)
img32 = cv2.resize(img, opts.latent_size, interpolation=cv2.INTER_NEAREST)
assert mask.max() == 1
vis_mask32 = mask_image(
img32, inpaint_latent_mask[0,0].cpu().numpy(), (255,255,255), transparent=False
).astype(np.uint8) # 1.0 - mask[0, 0].cpu().numpy()
assert np.unique(inpaint_mask).shape[0] <= 2
assert hand_mask.dtype == bool
mask256 = inpaint_mask # hand_mask * (1 - inpaint_mask)
vis_mask256 = mask_image(img, mask256, (255,255,255), transparent=False).astype(
np.uint8
) # 1 - mask256
return (
ref_cond,
target_cond,
latent,
inpaint_latent_mask,
keypts,
vis_mask32,
vis_mask256,
)
def switch_mask_size(radio):
if radio == "256x256":
out = (gr.update(visible=False), gr.update(visible=True))
elif radio == "latent size (32x32)":
out = (gr.update(visible=True), gr.update(visible=False))
return out
@spaces.GPU(duration=300)
def sample_inpaint(
ref_cond,
target_cond,
latent,
inpaint_latent_mask,
keypts,
num_gen,
seed,
cfg,
quality,
):
set_seed(seed)
N = num_gen
jump_length = 10
jump_n_sample = quality
cfg_scale = cfg
z = torch.randn(
(N, opts.latent_dim, opts.latent_size[0], opts.latent_size[1]), device=device
)
target_cond_N = target_cond.repeat(N, 1, 1, 1).to(z.device)
ref_cond_N = ref_cond.repeat(N, 1, 1, 1).to(z.device)
# novel view synthesis mode = off
nvs = torch.zeros(N, dtype=torch.int, device=device)
z = torch.cat([z, z], 0)
model_kwargs = dict(
target_cond=torch.cat([target_cond_N, torch.zeros_like(target_cond_N)]),
ref_cond=torch.cat([ref_cond_N, torch.zeros_like(ref_cond_N)]),
nvs=torch.cat([nvs, 2 * torch.ones_like(nvs)]),
cfg_scale=cfg_scale,
)
samples, _ = diffusion.inpaint_p_sample_loop(
model.forward_with_cfg,
z.shape,
latent.to(z.device),
inpaint_latent_mask.to(z.device),
z,
clip_denoised=False,
model_kwargs=model_kwargs,
progress=True,
device=z.device,
jump_length=jump_length,
jump_n_sample=jump_n_sample,
).chunk(2)
sampled_images = autoencoder.decode(samples / opts.latent_scaling_factor)
sampled_images = torch.clamp(sampled_images, min=-1.0, max=1.0)
sampled_images = unnormalize(sampled_images.permute(0, 2, 3, 1).cpu().numpy())
# visualize
results = []
results_pose = []
for i in range(FIX_MAX_N):
if i < num_gen:
results.append(sampled_images[i])
results_pose.append(visualize_hand(keypts, sampled_images[i]))
else:
results.append(placeholder)
results_pose.append(placeholder)
return results, results_pose
def flip_hand(
img, pose_img, cond: Optional[torch.Tensor], keypts: Optional[torch.Tensor] = None
):
if cond is None: # clear clicked
return None, None, None, None
img["composite"] = img["composite"][:, ::-1, :]
img["background"] = img["background"][:, ::-1, :]
img["layers"] = [layer[:, ::-1, :] for layer in img["layers"]]
pose_img = pose_img[:, ::-1, :]
cond = cond.flip(-1)
if keypts is not None: # cond is target_cond
if keypts[:21, :].sum() != 0:
keypts[:21, 0] = opts.image_size[1] - keypts[:21, 0]
# keypts[:21, 1] = opts.image_size[0] - keypts[:21, 1]
if keypts[21:, :].sum() != 0:
keypts[21:, 0] = opts.image_size[1] - keypts[21:, 0]
# keypts[21:, 1] = opts.image_size[0] - keypts[21:, 1]
return img, pose_img, cond, keypts
def resize_to_full(img):
img["background"] = cv2.resize(img["background"], (LENGTH, LENGTH))
img["composite"] = cv2.resize(img["composite"], (LENGTH, LENGTH))
img["layers"] = [cv2.resize(layer, (LENGTH, LENGTH)) for layer in img["layers"]]
return img
def clear_all():
return (
None,
None,
False,
None,
None,
False,
None,
None,
None,
None,
None,
None,
None,
1,
42,
3.0,
)
def fix_clear_all():
return (
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
1,
# (0,0),
42,
3.0,
10,
)
def enable_component(image1, image2):
if image1 is None or image2 is None:
return gr.update(interactive=False)
if "background" in image1 and "layers" in image1 and "composite" in image1:
if (
image1["background"].sum() == 0
and (sum([im.sum() for im in image1["layers"]]) == 0)
and image1["composite"].sum() == 0
):
return gr.update(interactive=False)
if "background" in image2 and "layers" in image2 and "composite" in image2:
if (
image2["background"].sum() == 0
and (sum([im.sum() for im in image2["layers"]]) == 0)
and image2["composite"].sum() == 0
):
return gr.update(interactive=False)
return gr.update(interactive=True)
def set_visible(checkbox, kpts, img_clean, img_pose_right, img_pose_left):
if kpts is None:
kpts = [[], []]
if "Right hand" not in checkbox:
kpts[0] = []
vis_right = img_clean
update_right = gr.update(visible=False)
update_r_info = gr.update(visible=False)
else:
vis_right = img_pose_right
update_right = gr.update(visible=True)
update_r_info = gr.update(visible=True)
if "Left hand" not in checkbox:
kpts[1] = []
vis_left = img_clean
update_left = gr.update(visible=False)
update_l_info = gr.update(visible=False)
else:
vis_left = img_pose_left
update_left = gr.update(visible=True)
update_l_info = gr.update(visible=True)
return (
kpts,
vis_right,
vis_left,
update_right,
update_right,
update_right,
update_left,
update_left,
update_left,
update_r_info,
update_l_info,
)
LENGTH = 480
example_imgs = [
[
"sample_images/sample1.jpg",
],
[
"sample_images/sample2.jpg",
],
[
"sample_images/sample3.jpg",
],
[
"sample_images/sample4.jpg",
],
[
"sample_images/sample5.jpg",
],
[
"sample_images/sample6.jpg",
],
[
"sample_images/sample7.jpg",
],
[
"sample_images/sample8.jpg",
],
[
"sample_images/sample9.jpg",
],
[
"sample_images/sample10.jpg",
],
[
"sample_images/sample11.jpg",
],
["pose_images/pose1.jpg"],
["pose_images/pose2.jpg"],
["pose_images/pose3.jpg"],
["pose_images/pose4.jpg"],
["pose_images/pose5.jpg"],
["pose_images/pose6.jpg"],
["pose_images/pose7.jpg"],
["pose_images/pose8.jpg"],
]
fix_example_imgs = [
["bad_hands/1.jpg"], # "bad_hands/1_mask.jpg"],
["bad_hands/2.jpg"], # "bad_hands/2_mask.jpg"],
["bad_hands/3.jpg"], # "bad_hands/3_mask.jpg"],
["bad_hands/4.jpg"], # "bad_hands/4_mask.jpg"],
["bad_hands/5.jpg"], # "bad_hands/5_mask.jpg"],
["bad_hands/6.jpg"], # "bad_hands/6_mask.jpg"],
["bad_hands/7.jpg"], # "bad_hands/7_mask.jpg"],
["bad_hands/8.jpg"], # "bad_hands/8_mask.jpg"],
["bad_hands/9.jpg"], # "bad_hands/9_mask.jpg"],
["bad_hands/10.jpg"], # "bad_hands/10_mask.jpg"],
["bad_hands/11.jpg"], # "bad_hands/11_mask.jpg"],
["bad_hands/12.jpg"], # "bad_hands/12_mask.jpg"],
["bad_hands/13.jpg"], # "bad_hands/13_mask.jpg"],
]
custom_css = """
.gradio-container .examples img {
width: 240px !important;
height: 240px !important;
}
"""
_HEADER_ = '''
<h1><b>FoundHand: Large-Scale Domain-Specific Learning for Controllable Hand Image Generation</b></h1>
<h2>
📝<a href='https://arxiv.org/abs/2412.02690' target='_blank'>Paper</a>
📢<a href='https://ivl.cs.brown.edu/research/foundhand.html' target='_blank'>Project</a>
</h2>
'''
_CITE_ = r"""
```
@article{chen2024foundhand,
title={FoundHand: Large-Scale Domain-Specific Learning for Controllable Hand Image Generation},
author={Chen, Kefan and Min, Chaerin and Zhang, Linguang and Hampali, Shreyas and Keskin, Cem and Sridhar, Srinath},
journal={arXiv preprint arXiv:2412.02690},
year={2024}
}
```
"""
with gr.Blocks(css=custom_css) as demo:
gr.Markdown(_HEADER_)
with gr.Tab("Edit Hand Poses"):
ref_img = gr.State(value=None)
ref_cond = gr.State(value=None)
keypts = gr.State(value=None)
target_img = gr.State(value=None)
target_cond = gr.State(value=None)
target_keypts = gr.State(value=None)
dump = gr.State(value=None)
with gr.Row():
with gr.Column():
gr.Markdown(
"""<p style="text-align: center; font-size: 25px; font-weight: bold; ">1. Reference</p>"""
)
gr.Markdown("""<p style="text-align: center;"><br></p>""")
ref = gr.ImageEditor(
type="numpy",
label="Reference",
show_label=True,
height=LENGTH,
width=LENGTH,
brush=False,
layers=False,
crop_size="1:1",
)
ref_finish_crop = gr.Button(value="Finish Cropping", interactive=False)
ref_pose = gr.Image(
type="numpy",
label="Reference Pose",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
)
ref_flip = gr.Checkbox(
value=False, label="Flip Handedness (Reference)", interactive=False
)
with gr.Column():
gr.Markdown(
"""<p style="text-align: center; font-size: 25px; font-weight: bold;">2. Target</p>"""
)
target = gr.ImageEditor(
type="numpy",
label="Target",
show_label=True,
height=LENGTH,
width=LENGTH,
brush=False,
layers=False,
crop_size="1:1",
)
target_finish_crop = gr.Button(
value="Finish Cropping", interactive=False
)
target_pose = gr.Image(
type="numpy",
label="Target Pose",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
)
target_flip = gr.Checkbox(
value=False, label="Flip Handedness (Target)", interactive=False
)
with gr.Column():
gr.Markdown(
"""<p style="text-align: center; font-size: 25px; font-weight: bold;">3. Result</p>"""
)
gr.Markdown(
"""<p style="text-align: center;">Run is enabled after the images have been processed</p>"""
)
run = gr.Button(value="Run", interactive=False)
gr.Markdown(
"""<p style="text-align: center;">~20s per generation with RTX3090. ~50s with A100. <br>(For example, if you set Number of generations as 2, it would take around 40s)</p>"""
)
results = gr.Gallery(
type="numpy",
label="Results",
show_label=True,
height=LENGTH,
min_width=LENGTH,
columns=MAX_N,
interactive=False,
preview=True,
)
results_pose = gr.Gallery(
type="numpy",
label="Results Pose",
show_label=True,
height=LENGTH,
min_width=LENGTH,
columns=MAX_N,
interactive=False,
preview=True,
)
clear = gr.ClearButton()
with gr.Row():
n_generation = gr.Slider(
label="Number of generations",
value=1,
minimum=1,
maximum=MAX_N,
step=1,
randomize=False,
interactive=True,
)
seed = gr.Slider(
label="Seed",
value=42,
minimum=0,
maximum=10000,
step=1,
randomize=False,
interactive=True,
)
cfg = gr.Slider(
label="Classifier free guidance scale",
value=2.5,
minimum=0.0,
maximum=10.0,
step=0.1,
randomize=False,
interactive=True,
)
ref.change(enable_component, [ref, ref], ref_finish_crop)
ref_finish_crop.click(get_ref_anno, [ref], [ref_img, ref_pose, ref_cond])
ref_pose.change(enable_component, [ref_img, ref_pose], ref_flip)
ref_flip.select(
flip_hand, [ref, ref_pose, ref_cond], [ref, ref_pose, ref_cond, dump]
)
target.change(enable_component, [target, target], target_finish_crop)
target_finish_crop.click(
get_target_anno,
[target],
[target_img, target_pose, target_cond, target_keypts],
)
target_pose.change(enable_component, [target_img, target_pose], target_flip)
target_flip.select(
flip_hand,
[target, target_pose, target_cond, target_keypts],
[target, target_pose, target_cond, target_keypts],
)
ref_pose.change(enable_component, [ref_pose, target_pose], run)
target_pose.change(enable_component, [ref_pose, target_pose], run)
run.click(
sample_diff,
[ref_cond, target_cond, target_keypts, n_generation, seed, cfg],
[results, results_pose],
)
clear.click(
clear_all,
[],
[
ref,
ref_pose,
ref_flip,
target,
target_pose,
target_flip,
results,
results_pose,
ref_img,
ref_cond,
# mask,
target_img,
target_cond,
target_keypts,
n_generation,
seed,
cfg,
],
)
gr.Markdown("""<p style="font-size: 25px; font-weight: bold;">Examples</p>""")
with gr.Tab("Reference"):
with gr.Row():
gr.Examples(example_imgs, [ref], examples_per_page=20)
with gr.Tab("Target"):
with gr.Row():
gr.Examples(example_imgs, [target], examples_per_page=20)
with gr.Tab("Fix Hands"):
fix_inpaint_mask = gr.State(value=None)
fix_original = gr.State(value=None)
fix_img = gr.State(value=None)
fix_kpts = gr.State(value=None)
fix_kpts_np = gr.State(value=None)
fix_ref_cond = gr.State(value=None)
fix_target_cond = gr.State(value=None)
fix_latent = gr.State(value=None)
fix_inpaint_latent = gr.State(value=None)
# fix_size_memory = gr.State(value=(0, 0))
gr.Markdown("""<p style="text-align: center; font-size: 25px; font-weight: bold; ">⚠️ Note</p>""")
gr.Markdown("""<p>"Fix Hands" with A100 needs around 6 mins, which is beyond the ZeroGPU quota (5 mins). Please either purchase additional gpus from Hugging Face or wait for us to open-source our code soon so that you can use your own gpus🙏 </p>""")
with gr.Row():
with gr.Column():
gr.Markdown(
"""<p style="text-align: center; font-size: 25px; font-weight: bold; ">1. Image Cropping & Brushing</p>"""
)
gr.Markdown(
"""<p style="text-align: center;">Crop the image around the hand.<br>Then, brush area (e.g., wrong finger) that needs to be fixed.</p>"""
)
gr.Markdown(
"""<p style="text-align: center; font-size: 20px; font-weight: bold; ">A. Crop</p>"""
)
fix_crop = gr.ImageEditor(
type="numpy",
sources=["upload", "webcam", "clipboard"],
label="Image crop",
show_label=True,
height=LENGTH,
width=LENGTH,
layers=False,
crop_size="1:1",
brush=False,
image_mode="RGBA",
container=False,
)
gr.Markdown(
"""<p style="text-align: center; font-size: 20px; font-weight: bold; ">B. Brush</p>"""
)
fix_ref = gr.ImageEditor(
type="numpy",
label="Image brush",
sources=(),
show_label=True,
height=LENGTH,
width=LENGTH,
layers=False,
transforms=("brush"),
brush=gr.Brush(
colors=["rgb(255, 255, 255)"], default_size=20
), # 204, 50, 50
image_mode="RGBA",
container=False,
interactive=False,
)
fix_finish_crop = gr.Button(
value="Finish Croping & Brushing", interactive=False
)
gr.Markdown(
"""<p style="text-align: left; font-size: 20px; font-weight: bold; ">OpenPose keypoints convention</p>"""
)
fix_openpose = gr.Image(
value="openpose.png",
type="numpy",
label="OpenPose keypoints convention",
show_label=True,
height=LENGTH // 3 * 2,
width=LENGTH // 3 * 2,
interactive=False,
)
with gr.Column():
gr.Markdown(
"""<p style="text-align: center; font-size: 25px; font-weight: bold; ">2. Keypoint Selection</p>"""
)
gr.Markdown(
"""<p style="text-align: center;">On the hand, select 21 keypoints that you hope the output to be. <br>Please see the \"OpenPose keypoints convention\" on the bottom left.</p>"""
)
fix_checkbox = gr.CheckboxGroup(
["Right hand", "Left hand"],
# value=["Right hand", "Left hand"],
label="Hand side",
info="Which side this hand is? Could be both.",
interactive=False,
)
fix_kp_r_info = gr.Markdown(
"""<p style="text-align: center; font-size: 20px; font-weight: bold; ">Select right only</p>""",
visible=False,
)
fix_kp_right = gr.Image(
type="numpy",
label="Keypoint Selection (right hand)",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
visible=False,
sources=[],
)
with gr.Row():
fix_undo_right = gr.Button(
value="Undo", interactive=False, visible=False
)
fix_reset_right = gr.Button(
value="Reset", interactive=False, visible=False
)
fix_kp_l_info = gr.Markdown(
"""<p style="text-align: center; font-size: 20px; font-weight: bold; ">Select left only</p>""",
visible=False
)
fix_kp_left = gr.Image(
type="numpy",
label="Keypoint Selection (left hand)",
show_label=True,
height=LENGTH,
width=LENGTH,
interactive=False,
visible=False,
sources=[],
)
with gr.Row():
fix_undo_left = gr.Button(
value="Undo", interactive=False, visible=False
)
fix_reset_left = gr.Button(
value="Reset", interactive=False, visible=False
)
with gr.Column():
gr.Markdown(
"""<p style="text-align: center; font-size: 25px; font-weight: bold; ">3. Prepare Mask</p>"""
)
gr.Markdown(
"""<p style="text-align: center;">In Fix Hands, not segmentation mask, but only inpaint mask is used.</p>"""
)
fix_ready = gr.Button(value="Ready", interactive=False)
fix_mask_size = gr.Radio(
["256x256", "latent size (32x32)"],
label="Visualized inpaint mask size",
interactive=False,
value="256x256",
)
gr.Markdown(
"""<p style="text-align: center; font-size: 20px; font-weight: bold; ">Visualized inpaint masks</p>"""
)
fix_vis_mask32 = gr.Image(
type="numpy",
label=f"Visualized {opts.latent_size} Inpaint Mask",
show_label=True,
height=opts.latent_size,
width=opts.latent_size,
interactive=False,
visible=False,
)
fix_vis_mask256 = gr.Image(
type="numpy",
label=f"Visualized {opts.image_size} Inpaint Mask",
visible=True,
show_label=True,
height=opts.image_size,
width=opts.image_size,
interactive=False,
)
with gr.Column():
gr.Markdown(
"""<p style="text-align: center; font-size: 25px; font-weight: bold; ">4. Results</p>"""
)
fix_run = gr.Button(value="Run", interactive=False)
gr.Markdown(
"""<p style="text-align: center;">>3min and ~24GB per generation</p>"""
)
fix_result = gr.Gallery(
type="numpy",
label="Results",
show_label=True,
height=LENGTH,
min_width=LENGTH,
columns=FIX_MAX_N,
interactive=False,
preview=True,
)
fix_result_pose = gr.Gallery(
type="numpy",
label="Results Pose",
show_label=True,
height=LENGTH,
min_width=LENGTH,
columns=FIX_MAX_N,
interactive=False,
preview=True,
)
fix_clear = gr.ClearButton()
gr.Markdown(
"[NOTE] Currently, Number of generation > 1 could lead to out-of-memory"
)
with gr.Row():
fix_n_generation = gr.Slider(
label="Number of generations",
value=1,
minimum=1,
maximum=FIX_MAX_N,
step=1,
randomize=False,
interactive=True,
)
fix_seed = gr.Slider(
label="Seed",
value=42,
minimum=0,
maximum=10000,
step=1,
randomize=False,
interactive=True,
)
fix_cfg = gr.Slider(
label="Classifier free guidance scale",
value=3.0,
minimum=0.0,
maximum=10.0,
step=0.1,
randomize=False,
interactive=True,
)
fix_quality = gr.Slider(
label="Quality",
value=10,
minimum=1,
maximum=10,
step=1,
randomize=False,
interactive=True,
)
fix_crop.change(enable_component, [fix_crop, fix_crop], fix_ref)
fix_crop.change(resize_to_full, fix_crop, fix_ref)
fix_ref.change(enable_component, [fix_ref, fix_ref], fix_finish_crop)
fix_finish_crop.click(get_mask_inpaint, [fix_ref], [fix_inpaint_mask])
# fix_finish_crop.click(lambda x: x["background"], [fix_ref], [fix_kp_right])
# fix_finish_crop.click(lambda x: x["background"], [fix_ref], [fix_kp_left])
fix_finish_crop.click(lambda x: x["background"], [fix_crop], [fix_original])
fix_finish_crop.click(visualize_ref, [fix_crop, fix_ref], [fix_img])
fix_img.change(lambda x: x, [fix_img], [fix_kp_right])
fix_img.change(lambda x: x, [fix_img], [fix_kp_left])
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_checkbox
)
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_kp_right
)
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_undo_right
)
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_reset_right
)
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_kp_left
)
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_undo_left
)
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_reset_left
)
fix_inpaint_mask.change(
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_ready
)
# fix_inpaint_mask.change(
# enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_run
# )
fix_checkbox.select(
set_visible,
[fix_checkbox, fix_kpts, fix_img, fix_kp_right, fix_kp_left],
[
fix_kpts,
fix_kp_right,
fix_kp_left,
fix_kp_right,
fix_undo_right,
fix_reset_right,
fix_kp_left,
fix_undo_left,
fix_reset_left,
fix_kp_r_info,
fix_kp_l_info,
],
)
fix_kp_right.select(
get_kps, [fix_img, fix_kpts, gr.State("right")], [fix_kp_right, fix_kpts]
)
fix_undo_right.click(
undo_kps, [fix_img, fix_kpts, gr.State("right")], [fix_kp_right, fix_kpts]
)
fix_reset_right.click(
reset_kps, [fix_img, fix_kpts, gr.State("right")], [fix_kp_right, fix_kpts]
)
fix_kp_left.select(
get_kps, [fix_img, fix_kpts, gr.State("left")], [fix_kp_left, fix_kpts]
)
fix_undo_left.click(
undo_kps, [fix_img, fix_kpts, gr.State("left")], [fix_kp_left, fix_kpts]
)
fix_reset_left.click(
reset_kps, [fix_img, fix_kpts, gr.State("left")], [fix_kp_left, fix_kpts]
)
# fix_kpts.change(check_keypoints, [fix_kpts], [fix_kp_right, fix_kp_left, fix_run])
# fix_run.click(lambda x:gr.update(value=None), [], [fix_result, fix_result_pose])
fix_vis_mask32.change(
enable_component, [fix_vis_mask32, fix_vis_mask256], fix_run
)
fix_vis_mask32.change(
enable_component, [fix_vis_mask32, fix_vis_mask256], fix_mask_size
)
fix_ready.click(
ready_sample,
[fix_original, fix_inpaint_mask, fix_kpts],
[
fix_ref_cond,
fix_target_cond,
fix_latent,
fix_inpaint_latent,
fix_kpts_np,
fix_vis_mask32,
fix_vis_mask256,
],
)
fix_mask_size.select(
switch_mask_size, [fix_mask_size], [fix_vis_mask32, fix_vis_mask256]
)
fix_run.click(
sample_inpaint,
[
fix_ref_cond,
fix_target_cond,
fix_latent,
fix_inpaint_latent,
fix_kpts_np,
fix_n_generation,
fix_seed,
fix_cfg,
fix_quality,
],
[fix_result, fix_result_pose],
)
fix_clear.click(
fix_clear_all,
[],
[
fix_crop,
fix_ref,
fix_kp_right,
fix_kp_left,
fix_result,
fix_result_pose,
fix_inpaint_mask,
fix_original,
fix_img,
fix_vis_mask32,
fix_vis_mask256,
fix_kpts,
fix_kpts_np,
fix_ref_cond,
fix_target_cond,
fix_latent,
fix_inpaint_latent,
fix_n_generation,
# fix_size_memory,
fix_seed,
fix_cfg,
fix_quality,
],
)
gr.Markdown("""<p style="font-size: 25px; font-weight: bold;">Examples</p>""")
fix_dump_ex = gr.Image(value=None, label="Original Image", visible=False)
fix_dump_ex_masked = gr.Image(value=None, label="After Brushing", visible=False)
with gr.Column():
fix_example = gr.Examples(
fix_example_imgs,
# run_on_click=True,
# fn=parse_fix_example,
# inputs=[fix_dump_ex, fix_dump_ex_masked],
# outputs=[fix_original, fix_ref, fix_img, fix_inpaint_mask],
inputs=[fix_crop],
examples_per_page=20,
)
gr.Markdown("<h1>Citation</h1>")
gr.Markdown(_CITE_)
# print("Ready to launch..")
# _, _, shared_url = demo.queue().launch(
# share=True, server_name="0.0.0.0", server_port=7739
# )
demo.launch(share=True)
|