StableVicuna / app.py
jon-tow's picture
Add application file
9ad7e40
raw
history blame
2.36 kB
"""
Model by @duyphung for @carperai
Dumb Simple Gradio by @jon-tow
"""
from string import Template
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("CarperAI/vicuna-13b-fine-tuned-rlhf")
model = AutoModelForCausalLM.from_pretrained(
"CarperAI/vicuna-13b-fine-tuned-rlhf",
torch_dtype=torch.bfloat16,
)
model.cuda()
max_context_length = model.config.max_position_embeddings
max_new_tokens = 256
prompt_template = Template("""\
### Human: $human
### Assistant: $bot\
""")
def bot(history):
history = history or []
# Hack to inject prompt formatting into the history
prompt_history = []
for human, bot in history:
prompt_history.append(
prompt_template.substitute(
human=human, bot=bot if bot is not None else "")
)
prompt = "\n\n".join(prompt_history)
prompt = prompt.rstrip()
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
# Use only the most recent context up to the maximum context length with room left over
# for the max new tokens
inputs = {k: v[:, -max_context_length + max_new_tokens:] for k, v in inputs.items()}
inputs_length = inputs['input_ids'].shape[1]
# Generate the response
tokens = model.generate(
**inputs,
# Only allow the model to generate up to 512 tokens
max_new_tokens=max_new_tokens,
num_return_sequences=1,
do_sample=True,
temperature=1.0,
top_p=1.0,
)
# Strip the initial prompt
tokens = tokens[:, inputs_length:]
# Process response
response = tokenizer.decode(tokens[0], skip_special_tokens=True)
response = response.split("###")[0].strip()
# Add the response to the history
history[-1][1] = response
return history
def user(user_message, history):
return "", history + [[user_message, None]]
with gr.Blocks() as demo:
gr.Markdown("""Vicuna-13B RLHF Chatbot""")
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=512)
msg = gr.Textbox()
clear = gr.Button("Clear")
state = gr.State([])
msg.submit(user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
bot, chatbot, chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch(share=True)