Spaces:
Paused
Paused
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Model by @duyphung for @carperai
|
3 |
+
Dumb Simple Gradio by @jon-tow
|
4 |
+
"""
|
5 |
+
from string import Template
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import gradio as gr
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
+
|
11 |
+
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("CarperAI/vicuna-13b-fine-tuned-rlhf")
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
"CarperAI/vicuna-13b-fine-tuned-rlhf",
|
15 |
+
torch_dtype=torch.bfloat16,
|
16 |
+
)
|
17 |
+
model.cuda()
|
18 |
+
max_context_length = model.config.max_position_embeddings
|
19 |
+
max_new_tokens = 256
|
20 |
+
|
21 |
+
|
22 |
+
prompt_template = Template("""\
|
23 |
+
### Human: $human
|
24 |
+
### Assistant: $bot\
|
25 |
+
""")
|
26 |
+
|
27 |
+
|
28 |
+
def bot(history):
|
29 |
+
history = history or []
|
30 |
+
|
31 |
+
# Hack to inject prompt formatting into the history
|
32 |
+
prompt_history = []
|
33 |
+
for human, bot in history:
|
34 |
+
prompt_history.append(
|
35 |
+
prompt_template.substitute(
|
36 |
+
human=human, bot=bot if bot is not None else "")
|
37 |
+
)
|
38 |
+
|
39 |
+
prompt = "\n\n".join(prompt_history)
|
40 |
+
prompt = prompt.rstrip()
|
41 |
+
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
42 |
+
# Use only the most recent context up to the maximum context length with room left over
|
43 |
+
# for the max new tokens
|
44 |
+
inputs = {k: v[:, -max_context_length + max_new_tokens:] for k, v in inputs.items()}
|
45 |
+
inputs_length = inputs['input_ids'].shape[1]
|
46 |
+
|
47 |
+
# Generate the response
|
48 |
+
tokens = model.generate(
|
49 |
+
**inputs,
|
50 |
+
# Only allow the model to generate up to 512 tokens
|
51 |
+
max_new_tokens=max_new_tokens,
|
52 |
+
num_return_sequences=1,
|
53 |
+
do_sample=True,
|
54 |
+
temperature=1.0,
|
55 |
+
top_p=1.0,
|
56 |
+
)
|
57 |
+
# Strip the initial prompt
|
58 |
+
tokens = tokens[:, inputs_length:]
|
59 |
+
|
60 |
+
# Process response
|
61 |
+
response = tokenizer.decode(tokens[0], skip_special_tokens=True)
|
62 |
+
response = response.split("###")[0].strip()
|
63 |
+
|
64 |
+
# Add the response to the history
|
65 |
+
history[-1][1] = response
|
66 |
+
return history
|
67 |
+
|
68 |
+
|
69 |
+
def user(user_message, history):
|
70 |
+
return "", history + [[user_message, None]]
|
71 |
+
|
72 |
+
|
73 |
+
with gr.Blocks() as demo:
|
74 |
+
gr.Markdown("""Vicuna-13B RLHF Chatbot""")
|
75 |
+
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=512)
|
76 |
+
msg = gr.Textbox()
|
77 |
+
clear = gr.Button("Clear")
|
78 |
+
state = gr.State([])
|
79 |
+
|
80 |
+
msg.submit(user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
|
81 |
+
bot, chatbot, chatbot)
|
82 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
83 |
+
|
84 |
+
demo.launch(share=True)
|