Spaces:
Paused
Paused
File size: 4,776 Bytes
3708810 1d56001 9ad7e40 3708810 9ad7e40 1d56001 9ad7e40 3708810 a6c46e0 3708810 a6c46e0 1d56001 3708810 9ad7e40 1d56001 ab740b3 9ad7e40 1d56001 9ad7e40 1d56001 9ad7e40 1d56001 9ad7e40 3708810 9ad7e40 1d56001 3708810 1d56001 3708810 1d56001 3708810 9ad7e40 1d56001 9ad7e40 3708810 1d56001 3708810 1d56001 3708810 9ad7e40 1d56001 3708810 1d56001 9ad7e40 3708810 1d56001 3708810 1d56001 3708810 1d56001 9ad7e40 3708810 6f7c28c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import os
import gc
from string import Template
from threading import Thread
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, BatchEncoding, TextIteratorStreamer
auth_token = os.environ.get("HUGGINGFACE_TOKEN")
tokenizer = AutoTokenizer.from_pretrained(
"stabilityai/stable-vicuna-13b-fp16",
use_auth_token=auth_token if auth_token else True,
)
model = AutoModelForCausalLM.from_pretrained(
"stabilityai/stable-vicuna-13b-fp16",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map="auto",
use_auth_token=auth_token if auth_token else True,
)
model.eval()
max_context_length = model.config.max_position_embeddings
max_new_tokens = 768
prompt_template = Template("""\
### Human: $human
### Assistant: $bot\
""")
system_prompt = "### Assistant: I am StableVicuna, a large language model created by Stability AI. I am here to chat!"
system_prompt_tokens = tokenizer([f"{system_prompt}\n\n"], return_tensors="pt")
max_sys_tokens = system_prompt_tokens['input_ids'].size(-1)
def bot(history):
history = history or []
# Inject prompt formatting into the history
prompt_history = []
for human, bot in history:
if bot is not None:
bot = bot.replace("<br>", "\n")
bot = bot.rstrip()
prompt_history.append(
prompt_template.substitute(
human=human, bot=bot if bot is not None else "")
)
msg_tokens = tokenizer(
"\n\n".join(prompt_history).strip(),
return_tensors="pt",
add_special_tokens=False # Use <BOS> from the system prompt
)
# Take only the most recent context up to the max context length and prepend the
# system prompt with the messages
max_tokens = -max_context_length + max_new_tokens + max_sys_tokens
inputs = BatchEncoding({
k: torch.concat([system_prompt_tokens[k], msg_tokens[k][:, max_tokens:]], dim=-1)
for k in msg_tokens
}).to('cuda')
# Remove `token_type_ids` b/c it's not yet supported for LLaMA `transformers` models
if inputs.get("token_type_ids", None) is not None:
inputs.pop("token_type_ids")
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=1.0,
temperature=1.0,
)
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
partial_text = ""
for new_text in streamer:
# Process out the prompt separator
new_text = new_text.replace("<br>", "\n")
if "###" in new_text:
new_text = new_text.split("###")[0]
partial_text += new_text.strip()
history[-1][1] = partial_text
break
else:
# Filter empty trailing new lines
if new_text == "\n":
new_text = new_text.strip()
partial_text += new_text
history[-1][1] = partial_text
yield history
return partial_text
def user(user_message, history):
return "", history + [[user_message, None]]
with gr.Blocks() as demo:
gr.Markdown("StableVicuna by Stability AI")
gr.HTML("<a href='https://huggingface.co/stabilityai/stable-vicuna-13b-delta'><code>stabilityai/stable-vicuna-13b-delta</a>")
gr.HTML('''<center><a href="https://huggingface.co/spaces/stabilityai/stable-vicuna?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space to skip the queue and run in a private space</center>''')
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=500)
state = gr.State([])
with gr.Row():
with gr.Column():
msg = gr.Textbox(
label="Send a message",
placeholder="Send a message",
show_label=False
).style(container=False)
with gr.Column():
with gr.Row():
submit = gr.Button("Send")
stop = gr.Button("Stop")
clear = gr.Button("Clear History")
submit_event = msg.submit(user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
fn=bot, inputs=[chatbot], outputs=[chatbot], queue=True)
submit_click_event = submit.click(user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
fn=bot, inputs=[chatbot], outputs=[chatbot], queue=True)
stop.click(fn=None, inputs=None, outputs=None, cancels=[submit_event, submit_click_event], queue=False)
clear.click(lambda: None, None, [chatbot], queue=True)
demo.queue(max_size=32, concurrency_count=2)
demo.launch()
|