File size: 2,469 Bytes
fd15a95 e9269c8 fd15a95 e9269c8 fd15a95 8314c44 b9eb1b0 8314c44 e9269c8 fd15a95 8314c44 fd15a95 8314c44 7b9d7c7 421f42d fd15a95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import gradio as gr
import librosa
from transformers import AutoFeatureExtractor, pipeline
def load_and_fix_data(input_file, model_sampling_rate):
speech, sample_rate = librosa.load(input_file)
if len(speech.shape) > 1:
speech = speech[:, 0] + speech[:, 1]
if sample_rate != model_sampling_rate:
speech = librosa.resample(speech, sample_rate, model_sampling_rate)
return speech
feature_extractor = AutoFeatureExtractor.from_pretrained("jonatasgrosman/wav2vec2-xls-r-1b-spanish")
sampling_rate = feature_extractor.sampling_rate
asr = pipeline("automatic-speech-recognition", model="jonatasgrosman/wav2vec2-xls-r-1b-spanish")
def predict_and_ctc_lm_decode(input_file):
speech = load_and_fix_data(input_file, sampling_rate)
transcribed_text = asr(speech, chunk_length_s=5, stride_length_s=1)["text"]
pipe2 = pipeline("text-classification", model = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")
sexism_detection = pipe2(transcribed_text)[0]['label']
return sexism_detection
description = """ This is a Gradio demo for Spanish audio transcription-based Sexism detection. To use this, simply provide an audio input (audio recording or via microphone), which will subsequently be transcribed and classified as sexism/non-sexism pertaining to audio (transcription) with the help of pre-trained models.
**NOTE: LABEL_0: "NON SEXISM" or LABEL_1: "SEXISM"**
Pre-trained Model used for Spanish ASR: [jonatasgrosman/wav2vec2-xls-r-1b-spanish](https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-spanish)
Pre-trained Model used for Sexism Detection : [hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021](https://huggingface.co/hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021)
"""
gr.Interface(
predict_and_ctc_lm_decode,
inputs=[gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio")],
#outputs=[gr.outputs.Label(num_top_classes=2),gr.outputs.Label(num_top_classes=2), gr.outputs.Label(num_top_classes=2)],
outputs=[gr.outputs.Textbox(label="Predicción")],
examples=[["audio1.wav"], ["audio2.wav"], ["audio3.wav"], ["audio4.wav"], ["sample_audio.wav"]],
title="Spanish-Audio-Transcription-based-Sexism-Detection",
description="This is a Gradio demo for Sentiment Analysis of Transcribed Spanish Audio",
layout="horizontal",
theme="huggingface",
).launch(enable_queue=True, cache_examples=True)
|