DrishtiSharma
commited on
Commit
•
8314c44
1
Parent(s):
7b9d7c7
Update app.py
Browse files
app.py
CHANGED
@@ -21,27 +21,17 @@ asr = pipeline("automatic-speech-recognition", model="jonatasgrosman/wav2vec2-la
|
|
21 |
def predict_and_ctc_lm_decode(input_file):
|
22 |
speech = load_and_fix_data(input_file, sampling_rate)
|
23 |
transcribed_text = asr(speech, chunk_length_s=5, stride_length_s=1)["text"]
|
24 |
-
pipe1 = pipeline("sentiment-analysis", model = "finiteautomata/beto-sentiment-analysis")
|
25 |
-
sentiment = pipe1(transcribed_text)
|
26 |
-
sentiment={dic["label"]: dic["score"] for dic in sentiment}
|
27 |
pipe2 = pipeline("text-classification", model = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")
|
28 |
-
sexism_detection = pipe2(transcribed_text)
|
29 |
-
|
30 |
-
#sexism_detection = np.where(sexism_detection['label']== 0, 'No Sexista', 'Sexista')
|
31 |
-
pipe3 = pipeline("text-classification", model = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")
|
32 |
-
harassment_detection = pipe3(transcribed_text)
|
33 |
-
harassment_detection={dic["label"]: dic["score"] for dic in harassment_detection}
|
34 |
-
#harassment_detection = np.where(harassment_detection['label']== 0, 'No Harassment', 'Harassment')
|
35 |
return sexism_detection
|
36 |
-
|
37 |
|
38 |
gr.Interface(
|
39 |
predict_and_ctc_lm_decode,
|
40 |
-
inputs=[
|
41 |
-
gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio")
|
42 |
-
],
|
43 |
#outputs=[gr.outputs.Label(num_top_classes=2),gr.outputs.Label(num_top_classes=2), gr.outputs.Label(num_top_classes=2)],
|
44 |
-
outputs=[gr.outputs.
|
45 |
examples=[["audio1.wav"], ["audio2.wav"], ["audio3.wav"], ["audio4.wav"], ["sample_audio.wav"]],
|
46 |
title="Spanish-Audio-Transcription-based-Sexism-Detection",
|
47 |
description="This is a Gradio demo for Sentiment Analysis of Transcribed Spanish Audio",
|
|
|
21 |
def predict_and_ctc_lm_decode(input_file):
|
22 |
speech = load_and_fix_data(input_file, sampling_rate)
|
23 |
transcribed_text = asr(speech, chunk_length_s=5, stride_length_s=1)["text"]
|
|
|
|
|
|
|
24 |
pipe2 = pipeline("text-classification", model = "hackathon-pln-es/twitter_sexismo-finetuned-robertuito-exist2021")
|
25 |
+
sexism_detection = pipe2(transcribed_text)[0]['label']
|
26 |
+
|
|
|
|
|
|
|
|
|
|
|
27 |
return sexism_detection
|
28 |
+
|
29 |
|
30 |
gr.Interface(
|
31 |
predict_and_ctc_lm_decode,
|
32 |
+
inputs=[gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio")],
|
|
|
|
|
33 |
#outputs=[gr.outputs.Label(num_top_classes=2),gr.outputs.Label(num_top_classes=2), gr.outputs.Label(num_top_classes=2)],
|
34 |
+
outputs=[gr.outputs.Textbox(label="Predicción")],
|
35 |
examples=[["audio1.wav"], ["audio2.wav"], ["audio3.wav"], ["audio4.wav"], ["sample_audio.wav"]],
|
36 |
title="Spanish-Audio-Transcription-based-Sexism-Detection",
|
37 |
description="This is a Gradio demo for Sentiment Analysis of Transcribed Spanish Audio",
|