File size: 28,493 Bytes
71817ec f340ee7 71817ec 550ed22 518472b 23ece77 518472b 854197f 550ed22 854197f 23ece77 550ed22 406b47b 23ece77 518472b 23ece77 518472b 23ece77 518472b 23ece77 518472b 23ece77 518472b 23ece77 518472b 23ece77 518472b 23ece77 854197f 518472b 23ece77 518472b 854197f 23ece77 854197f 23ece77 854197f 23ece77 854197f 23ece77 854197f 23ece77 854197f 23ece77 f340ee7 23ece77 f340ee7 854197f f340ee7 854197f 23ece77 518472b 23ece77 518472b 23ece77 518472b 23ece77 854197f 23ece77 518472b 23ece77 518472b 23ece77 854197f 518472b 23ece77 518472b 23ece77 854197f 23ece77 854197f 23ece77 854197f 23ece77 854197f 23ece77 854197f 23ece77 854197f 71817ec 23ece77 518472b 23ece77 518472b 23ece77 f340ee7 23ece77 f340ee7 23ece77 a6c30a7 23ece77 f340ee7 23ece77 518472b 23ece77 518472b 23ece77 f340ee7 518472b 23ece77 518472b f340ee7 23ece77 f340ee7 23ece77 f340ee7 23ece77 f340ee7 23ece77 f340ee7 23ece77 f340ee7 23ece77 f340ee7 23ece77 f340ee7 23ece77 f340ee7 23ece77 f340ee7 23ece77 f340ee7 23ece77 f340ee7 23ece77 f340ee7 23ece77 f340ee7 23ece77 550ed22 23ece77 550ed22 23ece77 550ed22 23ece77 550ed22 23ece77 550ed22 23ece77 550ed22 23ece77 550ed22 854197f 550ed22 f340ee7 23ece77 f340ee7 550ed22 f340ee7 71817ec 854197f 550ed22 23ece77 71817ec 550ed22 71817ec 854197f 550ed22 854197f 550ed22 406b47b 550ed22 854197f f340ee7 854197f f340ee7 550ed22 854197f 23ece77 854197f 550ed22 1cf93db 518472b 854197f 550ed22 71817ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
import numpy as np
import pandas as pd
import statsmodels.formula.api as smf
import statsmodels.api as sm
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from scipy.optimize import minimize
import plotly.express as px
from scipy.stats import t, f
import gradio as gr
class RSM_BoxBehnken:
def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
"""
Inicializa la clase con los datos del diseño Box-Behnken.
Args:
data (pd.DataFrame): DataFrame con los datos del experimento.
x1_name (str): Nombre de la primera variable independiente.
x2_name (str): Nombre de la segunda variable independiente.
x3_name (str): Nombre de la tercera variable independiente.
y_name (str): Nombre de la variable dependiente.
x1_levels (list): Niveles de la primera variable independiente.
x2_levels (list): Niveles de la segunda variable independiente.
x3_levels (list): Niveles de la tercera variable independiente.
"""
self.data = data.copy()
self.model = None
self.model_simplified = None
self.optimized_results = None
self.optimal_levels = None
self.x1_name = x1_name
self.x2_name = x2_name
self.x3_name = x3_name
self.y_name = y_name
# Niveles originales de las variables
self.x1_levels = x1_levels
self.x2_levels = x2_levels
self.x3_levels = x3_levels
def get_levels(self, variable_name):
"""
Obtiene los niveles para una variable específica.
Args:
variable_name (str): Nombre de la variable.
Returns:
list: Niveles de la variable.
"""
if variable_name == self.x1_name:
return self.x1_levels
elif variable_name == self.x2_name:
return self.x2_levels
elif variable_name == self.x3_name:
return self.x3_levels
else:
raise ValueError(f"Variable desconocida: {variable_name}")
def fit_model(self):
"""
Ajusta el modelo de segundo orden completo a los datos.
"""
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
self.model = smf.ols(formula, data=self.data).fit()
print("Modelo Completo:")
print(self.model.summary())
return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")
def fit_simplified_model(self):
"""
Ajusta el modelo de segundo orden a los datos, eliminando términos no significativos.
"""
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
self.model_simplified = smf.ols(formula, data=self.data).fit()
print("\nModelo Simplificado:")
print(self.model_simplified.summary())
return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
def optimize(self, method='Nelder-Mead'):
"""
Encuentra los niveles óptimos de los factores para maximizar la respuesta usando el modelo simplificado.
Args:
method (str): Método de optimización a utilizar (por defecto, 'Nelder-Mead').
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return
def objective_function(x):
return -self.model_simplified.predict(pd.DataFrame({self.x1_name: [x[0]], self.x2_name: [x[1]], self.x3_name: [x[2]]}))
bounds = [(-1, 1), (-1, 1), (-1, 1)]
x0 = [0, 0, 0]
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
self.optimal_levels = self.optimized_results.x
# Convertir niveles óptimos de codificados a naturales
optimal_levels_natural = [
self.coded_to_natural(self.optimal_levels[0], self.x1_name),
self.coded_to_natural(self.optimal_levels[1], self.x2_name),
self.coded_to_natural(self.optimal_levels[2], self.x3_name)
]
# Crear la tabla de optimización
optimization_table = pd.DataFrame({
'Variable': [self.x1_name, self.x2_name, self.x3_name],
'Nivel Óptimo (Natural)': optimal_levels_natural,
'Nivel Óptimo (Codificado)': self.optimal_levels
})
return optimization_table
def plot_rsm_individual(self, fixed_variable, fixed_level):
"""
Genera un gráfico de superficie de respuesta (RSM) individual para una configuración específica.
Args:
fixed_variable (str): Nombre de la variable a mantener fija.
fixed_level (float): Nivel al que se fija la variable (en unidades naturales).
Returns:
go.Figure: Objeto de figura de Plotly.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return None
# Determinar las variables que varían y sus niveles naturales
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
# Establecer los niveles naturales para las variables que varían
x_natural_levels = self.get_levels(varying_variables[0])
y_natural_levels = self.get_levels(varying_variables[1])
# Crear una malla de puntos para las variables que varían (en unidades naturales)
x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)
# Convertir la malla de variables naturales a codificadas
x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
y_grid_coded = self.natural_to_coded(y_grid_natural, varying_variables[1])
# Crear un DataFrame para la predicción con variables codificadas
prediction_data = pd.DataFrame({
varying_variables[0]: x_grid_coded.flatten(),
varying_variables[1]: y_grid_coded.flatten(),
})
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
# Calcular los valores predichos
z_pred = self.model_simplified.predict(prediction_data).values.reshape(x_grid_coded.shape)
# 1. Identificar los dos factores que varían
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
# 2. Filtrar por el nivel de la variable fija (en codificado)
fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
# 3. Filtrar por niveles válidos en las variables que varían
valid_levels = [-1, 0, 1]
experiments_data = subset_data[
subset_data[varying_variables[0]].isin(valid_levels) &
subset_data[varying_variables[1]].isin(valid_levels)
]
# Convertir coordenadas de experimentos a naturales
experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
# Crear el gráfico de superficie con variables naturales en los ejes y transparencia
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
# --- Añadir cuadrícula a la superficie ---
# Líneas en la dirección x
for i in range(x_grid_natural.shape[0]):
fig.add_trace(go.Scatter3d(
x=x_grid_natural[i, :],
y=y_grid_natural[i, :],
z=z_pred[i, :],
mode='lines',
line=dict(color='gray', width=2),
showlegend=False,
hoverinfo='skip'
))
# Líneas en la dirección y
for j in range(x_grid_natural.shape[1]):
fig.add_trace(go.Scatter3d(
x=x_grid_natural[:, j],
y=y_grid_natural[:, j],
z=z_pred[:, j],
mode='lines',
line=dict(color='gray', width=2),
showlegend=False,
hoverinfo='skip'
))
# --- Fin de la adición de la cuadrícula ---
# Añadir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
# Crear una lista de colores y etiquetas para los puntos
colors = ['red', 'blue', 'green', 'purple', 'orange', 'yellow', 'cyan', 'magenta']
point_labels = []
for i, row in experiments_data.iterrows():
point_labels.append(f"{row[self.y_name]:.2f}")
fig.add_trace(go.Scatter3d(
x=experiments_x_natural,
y=experiments_y_natural,
z=experiments_data[self.y_name],
mode='markers+text',
marker=dict(size=4, color=colors[:len(experiments_x_natural)]), # Usar colores de la lista
text=point_labels, # Usar las etiquetas creadas
textposition='top center',
name='Experimentos'
))
# Añadir etiquetas y título con variables naturales
fig.update_layout(
scene=dict(
xaxis_title=varying_variables[0] + " (g/L)",
yaxis_title=varying_variables[1] + " (g/L)",
zaxis_title=self.y_name,
# Puedes mantener la configuración de grid en los planos si lo deseas
# xaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray'),
# yaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray'),
# zaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray')
),
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.2f} (g/L) (Modelo Simplificado)</sup>",
height=800,
width=1000,
showlegend=True
)
return fig
def generate_all_plots(self):
"""
Genera todas las gráficas de RSM, variando la variable fija y sus niveles usando el modelo simplificado.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return
# Niveles naturales para graficar
levels_to_plot_natural = {
self.x1_name: self.x1_levels,
self.x2_name: self.x2_levels,
self.x3_name: self.x3_levels
}
# Generar y mostrar gráficos individuales
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
for level in levels_to_plot_natural[fixed_variable]:
fig = self.plot_rsm_individual(fixed_variable, level)
if fig is not None:
fig.show()
def coded_to_natural(self, coded_value, variable_name):
"""Convierte un valor codificado a su valor natural."""
levels = self.get_levels(variable_name)
return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2
def natural_to_coded(self, natural_value, variable_name):
"""Convierte un valor natural a su valor codificado."""
levels = self.get_levels(variable_name)
return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])
def pareto_chart(self, model, title):
"""
Genera un diagrama de Pareto para los efectos estandarizados de un modelo,
incluyendo la línea de significancia.
Args:
model: Modelo ajustado de statsmodels.
title (str): Título del gráfico.
"""
# Calcular los efectos estandarizados
tvalues = model.tvalues[1:] # Excluir la Intercept
abs_tvalues = np.abs(tvalues)
sorted_idx = np.argsort(abs_tvalues)[::-1]
sorted_tvalues = abs_tvalues[sorted_idx]
sorted_names = tvalues.index[sorted_idx]
# Calcular el valor crítico de t para la línea de significancia
alpha = 0.05 # Nivel de significancia
dof = model.df_resid # Grados de libertad residuales
t_critical = t.ppf(1 - alpha / 2, dof)
# Crear el diagrama de Pareto
fig = px.bar(
x=sorted_tvalues,
y=sorted_names,
orientation='h',
labels={'x': 'Efecto Estandarizado', 'y': 'Término'},
title=title
)
fig.update_yaxes(autorange="reversed")
# Agregar la línea de significancia
fig.add_vline(x=t_critical, line_dash="dot",
annotation_text=f"t crítico = {t_critical:.2f}",
annotation_position="bottom right")
return fig
def get_simplified_equation(self):
"""
Imprime la ecuación del modelo simplificado.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return None
coefficients = self.model_simplified.params
equation = f"{self.y_name} = {coefficients['Intercept']:.4f}"
for term, coef in coefficients.items():
if term != 'Intercept':
if term == f'{self.x1_name}':
equation += f" + {coef:.4f}*{self.x1_name}"
elif term == f'{self.x2_name}':
equation += f" + {coef:.4f}*{self.x2_name}"
elif term == f'{self.x3_name}':
equation += f" + {coef:.4f}*{self.x3_name}"
elif term == f'I({self.x1_name} ** 2)':
equation += f" + {coef:.4f}*{self.x1_name}^2"
elif term == f'I({self.x2_name} ** 2)':
equation += f" + {coef:.4f}*{self.x2_name}^2"
elif term == f'I({self.x3_name} ** 2)':
equation += f" + {coef:.4f}*{self.x3_name}^2"
return equation
def generate_prediction_table(self):
"""
Genera una tabla con los valores actuales, predichos y residuales.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return None
self.data['Predicho'] = self.model_simplified.predict(self.data)
self.data['Residual'] = self.data[self.y_name] - self.data['Predicho']
return self.data[[self.y_name, 'Predicho', 'Residual']]
def calculate_contribution_percentage(self):
"""
Calcula el porcentaje de contribución de cada factor a la variabilidad de la respuesta (AIA).
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return None
# ANOVA del modelo simplificado
anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
# Suma de cuadrados total
ss_total = anova_table['sum_sq'].sum()
# Crear tabla de contribución
contribution_table = pd.DataFrame({
'Factor': [],
'Suma de Cuadrados': [],
'% Contribución': []
})
# Calcular porcentaje de contribución para cada factor
for index, row in anova_table.iterrows():
if index != 'Residual':
factor_name = index
if factor_name == f'I({self.x1_name} ** 2)':
factor_name = f'{self.x1_name}^2'
elif factor_name == f'I({self.x2_name} ** 2)':
factor_name = f'{self.x2_name}^2'
elif factor_name == f'I({self.x3_name} ** 2)':
factor_name = f'{self.x3_name}^2'
ss_factor = row['sum_sq']
contribution_percentage = (ss_factor / ss_total) * 100
contribution_table = pd.concat([contribution_table, pd.DataFrame({
'Factor': [factor_name],
'Suma de Cuadrados': [ss_factor],
'% Contribución': [contribution_percentage]
})], ignore_index=True)
return contribution_table
def calculate_detailed_anova(self):
"""
Calcula la tabla ANOVA detallada con la descomposición del error residual.
"""
if self.model_simplified is None:
print("Error: Ajusta el modelo simplificado primero.")
return None
# --- ANOVA detallada ---
# 1. Ajustar un modelo solo con los términos de primer orden y cuadráticos
formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
model_reduced = smf.ols(formula_reduced, data=self.data).fit()
# 2. ANOVA del modelo reducido (para obtener la suma de cuadrados de la regresión)
anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)
# 3. Suma de cuadrados total
ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)
# 4. Grados de libertad totales
df_total = len(self.data) - 1
# 5. Suma de cuadrados de la regresión
ss_regression = anova_reduced['sum_sq'][:-1].sum() # Sumar todo excepto 'Residual'
# 6. Grados de libertad de la regresión
df_regression = len(anova_reduced) - 1
# 7. Suma de cuadrados del error residual
ss_residual = self.model_simplified.ssr
df_residual = self.model_simplified.df_resid
# 8. Suma de cuadrados del error puro (se calcula a partir de las réplicas)
replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum()
df_pure_error = len(replicas) - len(replicas.groupby([self.x1_name, self.x2_name, self.x3_name]))
# 9. Suma de cuadrados de la falta de ajuste
ss_lack_of_fit = ss_residual - ss_pure_error
df_lack_of_fit = df_residual - df_pure_error
# 10. Cuadrados medios
ms_regression = ss_regression / df_regression
ms_residual = ss_residual / df_residual
ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit
ms_pure_error = ss_pure_error / df_pure_error
# 11. Estadístico F y valor p para la falta de ajuste
f_lack_of_fit = ms_lack_of_fit / ms_pure_error
p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error) # Usar f.cdf de scipy.stats
# 12. Crear la tabla ANOVA detallada
detailed_anova_table = pd.DataFrame({
'Fuente de Variación': ['Regresión', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'],
'Suma de Cuadrados': [ss_regression, ss_residual, ss_lack_of_fit, ss_pure_error, ss_total],
'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
'Cuadrado Medio': [ms_regression, ms_residual, ms_lack_of_fit, ms_pure_error, np.nan],
'F': [np.nan, np.nan, f_lack_of_fit, np.nan, np.nan],
'Valor p': [np.nan, np.nan, p_lack_of_fit, np.nan, np.nan]
})
# Calcular la suma de cuadrados y grados de libertad para la curvatura
ss_curvature = anova_reduced['sum_sq'][f'I({self.x1_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x2_name} ** 2)'] + anova_reduced['sum_sq'][f'I({self.x3_name} ** 2)']
df_curvature = 3
# Añadir la fila de curvatura a la tabla ANOVA
detailed_anova_table.loc[len(detailed_anova_table)] = ['Curvatura', ss_curvature, df_curvature, ss_curvature / df_curvature, np.nan, np.nan]
# Reorganizar las filas para que la curvatura aparezca después de la regresión
detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4])
# Resetear el índice para que sea consecutivo
detailed_anova_table = detailed_anova_table.reset_index(drop=True)
return detailed_anova_table
# --- Funciones para la interfaz de Gradio ---
def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
"""
Carga los datos del diseño Box-Behnken desde cajas de texto y crea la instancia de RSM_BoxBehnken.
Args:
x1_name (str): Nombre de la primera variable independiente.
x2_name (str): Nombre de la segunda variable independiente.
x3_name (str): Nombre de la tercera variable independiente.
y_name (str): Nombre de la variable dependiente.
x1_levels_str (str): Niveles de la primera variable, separados por comas.
x2_levels_str (str): Niveles de la segunda variable, separados por comas.
x3_levels_str (str): Niveles de la tercera variable, separados por comas.
data_str (str): Datos del experimento en formato CSV, separados por comas.
Returns:
tuple: (pd.DataFrame, str, str, str, str, list, list, list, gr.update)
"""
try:
# Convertir los niveles a listas de números
x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
x2_levels = [float(x.strip()) for x in x2_levels_str.split(',')]
x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]
# Crear DataFrame a partir de la cadena de datos
data_list = [row.split(',') for row in data_str.strip().split('\n')]
column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
data = pd.DataFrame(data_list, columns=column_names)
data = data.apply(pd.to_numeric, errors='coerce') # Convertir a numérico
# Validar que el DataFrame tenga las columnas correctas
if not all(col in data.columns for col in column_names):
raise ValueError("El formato de los datos no es correcto.")
# Crear la instancia de RSM_BoxBehnken
global rsm
rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)
return data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels, gr.update(visible=True)
except Exception as e:
return None, "", "", "", "", [], [], [], gr.update(visible=False), f"Error: {e}"
def fit_and_optimize_model():
if 'rsm' not in globals():
return None, None, None, None, None, None, "Error: Carga los datos primero."
model_completo, pareto_completo = rsm.fit_model()
model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
optimization_table = rsm.optimize()
equation = rsm.get_simplified_equation()
prediction_table = rsm.generate_prediction_table()
contribution_table = rsm.calculate_contribution_percentage()
anova_table = rsm.calculate_detailed_anova()
# Formatear la ecuación para que se vea mejor en Markdown
equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
return model_completo.summary().as_html(), pareto_completo, model_simplificado.summary().as_html(), pareto_simplificado, equation_formatted, optimization_table, prediction_table, contribution_table, anova_table
def generate_rsm_plot(fixed_variable, fixed_level):
if 'rsm' not in globals():
return None, "Error: Carga los datos primero."
fig = rsm.plot_rsm_individual(fixed_variable, fixed_level)
return fig
# --- Crear la interfaz de Gradio ---
with gr.Blocks() as demo:
gr.Markdown("# Optimización de la producción de AIA usando RSM Box-Behnken")
with gr.Row():
with gr.Column():
gr.Markdown("## Configuración del Diseño")
x1_name_input = gr.Textbox(label="Nombre de la Variable X1 (ej. Glucosa)", value="Glucosa")
x2_name_input = gr.Textbox(label="Nombre de la Variable X2 (ej. Extracto de Levadura)", value="Extracto_de_Levadura")
x3_name_input = gr.Textbox(label="Nombre de la Variable X3 (ej. Triptófano)", value="Triptofano")
y_name_input = gr.Textbox(label="Nombre de la Variable Dependiente (ej. AIA (ppm))", value="AIA_ppm")
x1_levels_input = gr.Textbox(label="Niveles de X1 (separados por comas)", value="1, 3.5, 5.5")
x2_levels_input = gr.Textbox(label="Niveles de X2 (separados por comas)", value="0.03, 0.2, 0.3")
x3_levels_input = gr.Textbox(label="Niveles de X3 (separados por comas)", value="0.4, 0.65, 0.9")
data_input = gr.Textbox(label="Datos del Experimento (formato CSV)", lines=5, value="""1,-1,-1,0,166.594
2,1,-1,0,177.557
3,-1,1,0,127.261
4,1,1,0,147.573
5,-1,0,-1,188.883
6,1,0,-1,224.527
7,-1,0,1,190.238
8,1,0,1,226.483
9,0,-1,-1,195.550
10,0,1,-1,149.493
11,0,-1,1,187.683
12,0,1,1,148.621
13,0,0,0,278.951
14,0,0,0,297.238
15,0,0,0,280.896""")
load_button = gr.Button("Cargar Datos")
with gr.Column():
gr.Markdown("## Datos Cargados")
data_output = gr.Dataframe(label="Tabla de Datos")
# Hacer que la sección de análisis sea visible solo después de cargar los datos
with gr.Row(visible=False) as analysis_row:
with gr.Column():
fit_button = gr.Button("Ajustar Modelo y Optimizar")
gr.Markdown("**Modelo Completo**")
model_completo_output = gr.HTML()
pareto_completo_output = gr.Plot()
gr.Markdown("**Modelo Simplificado**")
model_simplificado_output = gr.HTML()
pareto_simplificado_output = gr.Plot()
equation_output = gr.HTML()
optimization_table_output = gr.Dataframe(label="Tabla de Optimización")
prediction_table_output = gr.Dataframe(label="Tabla de Predicciones")
contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución")
anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada")
with gr.Column():
gr.Markdown("## Generar Gráficos de Superficie de Respuesta")
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "Triptofano"], value="Glucosa")
fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=0, maximum=1, step=0.01, value=0.5)
plot_button = gr.Button("Generar Gráfico")
rsm_plot_output = gr.Plot()
load_button.click(
load_data,
inputs=[x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, data_input],
outputs=[data_output, x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, analysis_row]
)
fit_button.click(fit_and_optimize_model, outputs=[model_completo_output, pareto_completo_output, model_simplificado_output, pareto_simplificado_output, equation_output, optimization_table_output, prediction_table_output, contribution_table_output, anova_table_output])
plot_button.click(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=[rsm_plot_output])
# Ejemplo de uso
gr.Markdown("## Ejemplo de uso")
gr.Markdown("1. Introduce los nombres de las variables y sus niveles en las cajas de texto correspondientes.")
gr.Markdown("2. Copia y pega los datos del experimento en la caja de texto 'Datos del Experimento'.")
gr.Markdown("3. Haz clic en 'Cargar Datos' para cargar los datos en la tabla.")
gr.Markdown("4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles óptimos de los factores.")
gr.Markdown("5. Selecciona una variable fija y su nivel en los controles deslizantes.")
gr.Markdown("6. Haz clic en 'Generar Gráfico' para generar un gráfico de superficie de respuesta.")
demo.launch() |