Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,305 @@ from scipy.stats import t
|
|
10 |
import gradio as gr
|
11 |
|
12 |
class RSM_BoxBehnken:
|
13 |
-
# ... (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Crear un DataFrame a partir de la tabla
|
16 |
data = pd.DataFrame({
|
@@ -24,84 +322,55 @@ data = pd.DataFrame({
|
|
24 |
# Crear una instancia de la clase RSM_BoxBehnken
|
25 |
rsm = RSM_BoxBehnken(data)
|
26 |
|
27 |
-
#
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
return "Modelo completo ajustado. Revisa la consola para ver el resumen."
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
return "Modelo simplificado ajustado. Revisa la consola para ver el resumen."
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
return (f"Optimización realizada con {method}. Revisa la consola para ver los niveles óptimos.\n"
|
40 |
-
f"Niveles óptimos (codificados): {rsm.optimal_levels}\n"
|
41 |
-
f"Valor máximo de {rsm.y_name}: {-rsm.optimized_results.fun:.4f}")
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
49 |
|
50 |
-
|
|
|
|
|
51 |
|
|
|
52 |
with gr.Blocks() as demo:
|
53 |
-
gr.Markdown("#
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
with gr.Tab("Gráficos de Superficie de Respuesta"):
|
76 |
-
with gr.Row():
|
77 |
-
fixed_variable_dropdown = gr.Dropdown(
|
78 |
-
choices=[rsm.x1_name, rsm.x2_name, rsm.x3_name],
|
79 |
-
value=rsm.x1_name,
|
80 |
-
label="Variable Fija"
|
81 |
-
)
|
82 |
-
fixed_level_slider = gr.Slider(
|
83 |
-
minimum=min(rsm.get_levels(rsm.x1_name)),
|
84 |
-
maximum=max(rsm.get_levels(rsm.x1_name)),
|
85 |
-
step=0.01,
|
86 |
-
value=rsm.get_levels(rsm.x1_name)[1],
|
87 |
-
label="Nivel de Variable Fija (Natural)"
|
88 |
-
)
|
89 |
-
plot_button = gr.Button("Generar Gráfico")
|
90 |
-
plot_output = gr.Plot(label="Gráfico RSM")
|
91 |
-
|
92 |
-
def update_slider_range(fixed_variable):
|
93 |
-
levels = rsm.get_levels(fixed_variable)
|
94 |
-
return gr.Slider.update(minimum=min(levels), maximum=max(levels), value=levels[1])
|
95 |
-
|
96 |
-
fixed_variable_dropdown.change(
|
97 |
-
fn=update_slider_range,
|
98 |
-
inputs=fixed_variable_dropdown,
|
99 |
-
outputs=fixed_level_slider
|
100 |
-
)
|
101 |
-
plot_button.click(
|
102 |
-
fn=generate_plot,
|
103 |
-
inputs=[fixed_variable_dropdown, fixed_level_slider],
|
104 |
-
outputs=plot_output
|
105 |
-
)
|
106 |
|
107 |
demo.launch()
|
|
|
10 |
import gradio as gr
|
11 |
|
12 |
class RSM_BoxBehnken:
|
13 |
+
# ... (El código de tu clase RSM_BoxBehnken se mantiene igual) ...
|
14 |
+
def __init__(self, data):
|
15 |
+
"""
|
16 |
+
Inicializa la clase con los datos del diseño Box-Behnken.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
data (pd.DataFrame): DataFrame con los datos del experimento.
|
20 |
+
"""
|
21 |
+
self.data = data.copy()
|
22 |
+
self.data.rename(columns={
|
23 |
+
'Glucosa': 'Glucosa',
|
24 |
+
'Extracto de Levadura': 'Extracto_de_Levadura',
|
25 |
+
'Triptófano': 'Triptofano',
|
26 |
+
'AIA (ppm)': 'AIA_ppm'
|
27 |
+
}, inplace=True)
|
28 |
+
|
29 |
+
self.model = None
|
30 |
+
self.model_simplified = None
|
31 |
+
self.optimized_results = None
|
32 |
+
self.optimal_levels = None
|
33 |
+
|
34 |
+
self.x1_name = 'Glucosa'
|
35 |
+
self.x2_name = 'Extracto_de_Levadura'
|
36 |
+
self.x3_name = 'Triptofano'
|
37 |
+
self.y_name = 'AIA_ppm'
|
38 |
+
|
39 |
+
# Niveles originales de las variables
|
40 |
+
self.x1_levels = [1, 3.5, 5.5] # Glucosa
|
41 |
+
self.x2_levels = [0.03, 0.2, 0.3] # Extracto de Levadura
|
42 |
+
self.x3_levels = [0.4, 0.65, 0.9] # Triptófano
|
43 |
+
|
44 |
+
def get_levels(self, variable_name):
|
45 |
+
"""
|
46 |
+
Obtiene los niveles para una variable específica.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
variable_name (str): Nombre de la variable.
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
list: Niveles de la variable.
|
53 |
+
"""
|
54 |
+
if variable_name == self.x1_name:
|
55 |
+
return self.x1_levels
|
56 |
+
elif variable_name == self.x2_name:
|
57 |
+
return self.x2_levels
|
58 |
+
elif variable_name == self.x3_name:
|
59 |
+
return self.x3_levels
|
60 |
+
else:
|
61 |
+
raise ValueError(f"Variable desconocida: {variable_name}")
|
62 |
+
|
63 |
+
def fit_model(self):
|
64 |
+
"""
|
65 |
+
Ajusta el modelo de segundo orden completo a los datos.
|
66 |
+
"""
|
67 |
+
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
|
68 |
+
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
|
69 |
+
f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
|
70 |
+
self.model = smf.ols(formula, data=self.data).fit()
|
71 |
+
print("Modelo Completo:")
|
72 |
+
print(self.model.summary())
|
73 |
+
self.pareto_chart(self.model, "Pareto - Modelo Completo")
|
74 |
+
|
75 |
+
def fit_simplified_model(self):
|
76 |
+
"""
|
77 |
+
Ajusta el modelo de segundo orden a los datos, eliminando términos no significativos.
|
78 |
+
"""
|
79 |
+
formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
|
80 |
+
f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
|
81 |
+
self.model_simplified = smf.ols(formula, data=self.data).fit()
|
82 |
+
print("\nModelo Simplificado:")
|
83 |
+
print(self.model_simplified.summary())
|
84 |
+
self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")
|
85 |
+
|
86 |
+
def optimize(self, method='Nelder-Mead'):
|
87 |
+
"""
|
88 |
+
Encuentra los niveles óptimos de los factores para maximizar la respuesta usando el modelo simplificado.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
method (str): Método de optimización a utilizar (por defecto, 'Nelder-Mead').
|
92 |
+
"""
|
93 |
+
if self.model_simplified is None:
|
94 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
95 |
+
return
|
96 |
+
|
97 |
+
def objective_function(x):
|
98 |
+
return -self.model_simplified.predict(pd.DataFrame({self.x1_name: [x[0]], self.x2_name: [x[1]], self.x3_name: [x[2]]}))
|
99 |
+
|
100 |
+
bounds = [(-1, 1), (-1, 1), (-1, 1)]
|
101 |
+
x0 = [0, 0, 0]
|
102 |
+
|
103 |
+
self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
|
104 |
+
self.optimal_levels = self.optimized_results.x
|
105 |
+
|
106 |
+
# Convertir niveles óptimos de codificados a naturales
|
107 |
+
optimal_levels_natural = [
|
108 |
+
self.coded_to_natural(self.optimal_levels[0], self.x1_name),
|
109 |
+
self.coded_to_natural(self.optimal_levels[1], self.x2_name),
|
110 |
+
self.coded_to_natural(self.optimal_levels[2], self.x3_name)
|
111 |
+
]
|
112 |
+
|
113 |
+
print(f"\nNiveles óptimos encontrados (basado en modelo simplificado):")
|
114 |
+
print(f"{self.x1_name}: {optimal_levels_natural[0]:.4f} g/L")
|
115 |
+
print(f"{self.x2_name}: {optimal_levels_natural[1]:.4f} g/L")
|
116 |
+
print(f"{self.x3_name}: {optimal_levels_natural[2]:.4f} g/L")
|
117 |
+
print(f"Valor máximo de {self.y_name}: {-self.optimized_results.fun:.4f}")
|
118 |
+
|
119 |
+
def plot_rsm_individual(self, fixed_variable, fixed_level):
|
120 |
+
"""
|
121 |
+
Genera un gráfico de superficie de respuesta (RSM) individual para una configuración específica.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
fixed_variable (str): Nombre de la variable a mantener fija.
|
125 |
+
fixed_level (float): Nivel al que se fija la variable (en unidades naturales).
|
126 |
+
|
127 |
+
Returns:
|
128 |
+
go.Figure: Objeto de figura de Plotly.
|
129 |
+
"""
|
130 |
+
if self.model_simplified is None:
|
131 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
132 |
+
return None
|
133 |
+
|
134 |
+
# Determinar las variables que varían y sus niveles naturales
|
135 |
+
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
136 |
+
|
137 |
+
# Establecer los niveles naturales para las variables que varían
|
138 |
+
x_natural_levels = self.get_levels(varying_variables[0])
|
139 |
+
y_natural_levels = self.get_levels(varying_variables[1])
|
140 |
+
|
141 |
+
# Crear una malla de puntos para las variables que varían (en unidades naturales)
|
142 |
+
x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
|
143 |
+
y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
|
144 |
+
x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)
|
145 |
+
|
146 |
+
# Convertir la malla de variables naturales a codificadas
|
147 |
+
x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
|
148 |
+
y_grid_coded = self.natural_to_coded(y_grid_natural, varying_variables[1])
|
149 |
+
|
150 |
+
# Crear un DataFrame para la predicción con variables codificadas
|
151 |
+
prediction_data = pd.DataFrame({
|
152 |
+
varying_variables[0]: x_grid_coded.flatten(),
|
153 |
+
varying_variables[1]: y_grid_coded.flatten(),
|
154 |
+
})
|
155 |
+
prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)
|
156 |
+
|
157 |
+
# Calcular los valores predichos
|
158 |
+
z_pred = self.model_simplified.predict(prediction_data).values.reshape(x_grid_coded.shape)
|
159 |
+
|
160 |
+
# 1. Identificar los dos factores que varían
|
161 |
+
varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
|
162 |
+
|
163 |
+
# 2. Filtrar por el nivel de la variable fija (en codificado)
|
164 |
+
fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
|
165 |
+
subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]
|
166 |
+
|
167 |
+
# 3. Filtrar por niveles válidos en las variables que varían
|
168 |
+
valid_levels = [-1, 0, 1]
|
169 |
+
experiments_data = subset_data[
|
170 |
+
subset_data[varying_variables[0]].isin(valid_levels) &
|
171 |
+
subset_data[varying_variables[1]].isin(valid_levels)
|
172 |
+
]
|
173 |
+
|
174 |
+
# Convertir coordenadas de experimentos a naturales
|
175 |
+
experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
|
176 |
+
experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))
|
177 |
+
|
178 |
+
# Crear el gráfico de superficie con variables naturales en los ejes y transparencia
|
179 |
+
fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])
|
180 |
+
|
181 |
+
# --- Añadir cuadrícula a la superficie ---
|
182 |
+
# Líneas en la dirección x
|
183 |
+
for i in range(x_grid_natural.shape[0]):
|
184 |
+
fig.add_trace(go.Scatter3d(
|
185 |
+
x=x_grid_natural[i, :],
|
186 |
+
y=y_grid_natural[i, :],
|
187 |
+
z=z_pred[i, :],
|
188 |
+
mode='lines',
|
189 |
+
line=dict(color='gray', width=2),
|
190 |
+
showlegend=False,
|
191 |
+
hoverinfo='skip'
|
192 |
+
))
|
193 |
+
# Líneas en la dirección y
|
194 |
+
for j in range(x_grid_natural.shape[1]):
|
195 |
+
fig.add_trace(go.Scatter3d(
|
196 |
+
x=x_grid_natural[:, j],
|
197 |
+
y=y_grid_natural[:, j],
|
198 |
+
z=z_pred[:, j],
|
199 |
+
mode='lines',
|
200 |
+
line=dict(color='gray', width=2),
|
201 |
+
showlegend=False,
|
202 |
+
hoverinfo='skip'
|
203 |
+
))
|
204 |
+
|
205 |
+
# --- Fin de la adición de la cuadrícula ---
|
206 |
+
|
207 |
+
# Añadir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
|
208 |
+
# Crear una lista de colores y etiquetas para los puntos
|
209 |
+
colors = ['red', 'blue', 'green', 'purple', 'orange', 'yellow', 'cyan', 'magenta']
|
210 |
+
point_labels = []
|
211 |
+
for i, row in experiments_data.iterrows():
|
212 |
+
point_labels.append(f"{row[self.y_name]:.2f}")
|
213 |
+
|
214 |
+
fig.add_trace(go.Scatter3d(
|
215 |
+
x=experiments_x_natural,
|
216 |
+
y=experiments_y_natural,
|
217 |
+
z=experiments_data[self.y_name],
|
218 |
+
mode='markers+text',
|
219 |
+
marker=dict(size=4, color=colors[:len(experiments_x_natural)]), # Usar colores de la lista
|
220 |
+
text=point_labels, # Usar las etiquetas creadas
|
221 |
+
textposition='top center',
|
222 |
+
name='Experimentos'
|
223 |
+
))
|
224 |
+
|
225 |
+
# Añadir etiquetas y título con variables naturales
|
226 |
+
fig.update_layout(
|
227 |
+
scene=dict(
|
228 |
+
xaxis_title=varying_variables[0] + " (g/L)",
|
229 |
+
yaxis_title=varying_variables[1] + " (g/L)",
|
230 |
+
zaxis_title=self.y_name,
|
231 |
+
# Puedes mantener la configuración de grid en los planos si lo deseas
|
232 |
+
# xaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray'),
|
233 |
+
# yaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray'),
|
234 |
+
# zaxis=dict(showgrid=True, gridwidth=1, gridcolor='lightgray')
|
235 |
+
),
|
236 |
+
title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.2f} (g/L) (Modelo Simplificado)</sup>",
|
237 |
+
height=800,
|
238 |
+
width=1000,
|
239 |
+
showlegend=True
|
240 |
+
)
|
241 |
+
return fig
|
242 |
+
|
243 |
+
def generate_all_plots(self):
|
244 |
+
"""
|
245 |
+
Genera todas las gráficas de RSM, variando la variable fija y sus niveles usando el modelo simplificado.
|
246 |
+
"""
|
247 |
+
if self.model_simplified is None:
|
248 |
+
print("Error: Ajusta el modelo simplificado primero.")
|
249 |
+
return
|
250 |
+
|
251 |
+
# Niveles naturales para graficar
|
252 |
+
levels_to_plot_natural = {
|
253 |
+
self.x1_name: self.x1_levels,
|
254 |
+
self.x2_name: self.x2_levels,
|
255 |
+
self.x3_name: self.x3_levels
|
256 |
+
}
|
257 |
+
|
258 |
+
# Generar y mostrar gráficos individuales
|
259 |
+
for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
|
260 |
+
for level in levels_to_plot_natural[fixed_variable]:
|
261 |
+
fig = self.plot_rsm_individual(fixed_variable, level)
|
262 |
+
if fig is not None:
|
263 |
+
fig.show()
|
264 |
+
|
265 |
+
def coded_to_natural(self, coded_value, variable_name):
|
266 |
+
"""Convierte un valor codificado a su valor natural."""
|
267 |
+
levels = self.get_levels(variable_name)
|
268 |
+
return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2
|
269 |
+
|
270 |
+
def natural_to_coded(self, natural_value, variable_name):
|
271 |
+
"""Convierte un valor natural a su valor codificado."""
|
272 |
+
levels = self.get_levels(variable_name)
|
273 |
+
return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])
|
274 |
+
|
275 |
+
def pareto_chart(self, model, title):
|
276 |
+
"""
|
277 |
+
Genera un diagrama de Pareto para los efectos estandarizados de un modelo,
|
278 |
+
incluyendo la línea de significancia.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
model: Modelo ajustado de statsmodels.
|
282 |
+
title (str): Título del gráfico.
|
283 |
+
"""
|
284 |
+
# Calcular los efectos estandarizados
|
285 |
+
tvalues = model.tvalues[1:] # Excluir la Intercept
|
286 |
+
abs_tvalues = np.abs(tvalues)
|
287 |
+
sorted_idx = np.argsort(abs_tvalues)[::-1]
|
288 |
+
sorted_tvalues = abs_tvalues[sorted_idx]
|
289 |
+
sorted_names = tvalues.index[sorted_idx]
|
290 |
+
|
291 |
+
# Calcular el valor crítico de t para la línea de significancia
|
292 |
+
alpha = 0.05 # Nivel de significancia
|
293 |
+
dof = model.df_resid # Grados de libertad residuales
|
294 |
+
t_critical = t.ppf(1 - alpha / 2, dof)
|
295 |
+
|
296 |
+
# Crear el diagrama de Pareto
|
297 |
+
fig = px.bar(
|
298 |
+
x=sorted_tvalues,
|
299 |
+
y=sorted_names,
|
300 |
+
orientation='h',
|
301 |
+
labels={'x': 'Efecto Estandarizado', 'y': 'Término'},
|
302 |
+
title=title
|
303 |
+
)
|
304 |
+
fig.update_yaxes(autorange="reversed")
|
305 |
+
|
306 |
+
# Agregar la línea de significancia
|
307 |
+
fig.add_vline(x=t_critical, line_dash="dot",
|
308 |
+
annotation_text=f"t crítico = {t_critical:.2f}",
|
309 |
+
annotation_position="bottom right")
|
310 |
+
|
311 |
+
return fig
|
312 |
|
313 |
# Crear un DataFrame a partir de la tabla
|
314 |
data = pd.DataFrame({
|
|
|
322 |
# Crear una instancia de la clase RSM_BoxBehnken
|
323 |
rsm = RSM_BoxBehnken(data)
|
324 |
|
325 |
+
# Ajustar el modelo completo y generar el diagrama de Pareto
|
326 |
+
rsm.fit_model()
|
327 |
|
328 |
+
# Ajustar el modelo simplificado y generar el diagrama de Pareto
|
329 |
+
rsm.fit_simplified_model()
|
|
|
330 |
|
331 |
+
# Optimizar para encontrar los niveles óptimos (basado en el modelo simplificado)
|
332 |
+
rsm.optimize()
|
|
|
333 |
|
334 |
+
# Generar gráficos individuales de superficie de respuesta (9 en total)
|
335 |
+
#rsm.generate_all_plots()
|
|
|
|
|
|
|
336 |
|
337 |
+
# --- Interfaz de Gradio ---
|
338 |
+
|
339 |
+
def fit_and_optimize_model():
|
340 |
+
rsm.fit_model()
|
341 |
+
rsm.fit_simplified_model()
|
342 |
+
rsm.optimize()
|
343 |
+
model_summary = rsm.model_simplified.summary().as_html()
|
344 |
+
pareto_fig = rsm.pareto_chart(rsm.model_simplified, "Pareto - Modelo Simplificado")
|
345 |
+
return model_summary, pareto_fig, f"{rsm.x1_name}: {rsm.optimal_levels[0]:.4f} g/L, {rsm.x2_name}: {rsm.optimal_levels[1]:.4f} g/L, {rsm.x3_name}: {rsm.optimal_levels[2]:.4f} g/L, Valor máximo de {rsm.y_name}: {-rsm.optimized_results.fun:.4f}"
|
346 |
|
347 |
+
def generate_rsm_plot(fixed_variable, fixed_level):
|
348 |
+
fig = rsm.plot_rsm_individual(fixed_variable, fixed_level)
|
349 |
+
return fig
|
350 |
|
351 |
+
# Crear la interfaz de Gradio
|
352 |
with gr.Blocks() as demo:
|
353 |
+
gr.Markdown("# Optimización de la producción de AIA usando RSM Box-Behnken")
|
354 |
+
with gr.Row():
|
355 |
+
with gr.Column():
|
356 |
+
fit_button = gr.Button("Ajustar Modelo y Optimizar")
|
357 |
+
model_summary_output = gr.HTML()
|
358 |
+
pareto_chart_output = gr.Plot()
|
359 |
+
optimization_results_output = gr.Textbox(label="Resultados de la Optimización")
|
360 |
+
with gr.Column():
|
361 |
+
gr.Markdown("## Generar Gráficos de Superficie de Respuesta")
|
362 |
+
fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=[rsm.x1_name, rsm.x2_name, rsm.x3_name], value=rsm.x1_name)
|
363 |
+
fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=rsm.x1_levels[0], maximum=rsm.x1_levels[-1], step=0.01, value=rsm.x1_levels[1])
|
364 |
+
plot_button = gr.Button("Generar Gráfico")
|
365 |
+
rsm_plot_output = gr.Plot()
|
366 |
+
|
367 |
+
fit_button.click(fit_and_optimize_model, inputs=[], outputs=[model_summary_output, pareto_chart_output, optimization_results_output])
|
368 |
+
plot_button.click(generate_rsm_plot, inputs=[fixed_variable_input, fixed_level_input], outputs=rsm_plot_output)
|
369 |
+
|
370 |
+
# Ejemplo de uso
|
371 |
+
gr.Markdown("## Ejemplo de uso")
|
372 |
+
gr.Markdown("1. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles óptimos de los factores.")
|
373 |
+
gr.Markdown("2. Selecciona una variable fija y su nivel en los controles deslizantes.")
|
374 |
+
gr.Markdown("3. Haz clic en 'Generar Gráfico' para generar un gráfico de superficie de respuesta.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
|
376 |
demo.launch()
|