Update app.py
Browse files
app.py
CHANGED
@@ -1,136 +1,105 @@
|
|
1 |
import gradio as gr
|
2 |
import gspread
|
|
|
3 |
from oauth2client.service_account import ServiceAccountCredentials
|
4 |
from llama_cpp import Llama
|
5 |
from llama_index.core import VectorStoreIndex, Settings
|
6 |
-
from llama_index.core.node_parser import SentenceSplitter
|
7 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
8 |
-
from llama_index.llms.llama_cpp import LlamaCPP
|
9 |
-
from huggingface_hub import hf_hub_download
|
10 |
-
from llama_index.core.llms import ChatMessage
|
11 |
-
from llama_index.core.chat_engine.condense_plus_context import CondensePlusContextChatEngine
|
12 |
from llama_index.core.schema import Document
|
13 |
|
14 |
# ===================================
|
15 |
-
# 1️⃣
|
16 |
# ===================================
|
|
|
|
|
17 |
def read_google_sheets():
|
|
|
|
|
|
|
|
|
18 |
try:
|
19 |
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
|
20 |
creds = ServiceAccountCredentials.from_json_keyfile_name("credentials.json", scope)
|
21 |
-
client = gspread.authorize(creds)
|
22 |
-
|
23 |
-
SPREADSHEET_ID = "1e_cNMhwF-QYpyYUpqQh-XCw-OdhWS6EuYsoBUsVtdNg"
|
24 |
-
sheet_names = ["datatarget", "datacuti", "dataabsen", "datalembur", "pkb"]
|
25 |
-
|
26 |
-
all_data = []
|
27 |
-
spreadsheet = client.open_by_key(SPREADSHEET_ID)
|
28 |
-
|
29 |
-
for sheet_name in sheet_names:
|
30 |
-
try:
|
31 |
-
sheet = spreadsheet.worksheet(sheet_name)
|
32 |
-
data = sheet.get_all_values()
|
33 |
-
all_data.append(f"=== Data dari {sheet_name.upper()} ===")
|
34 |
-
all_data.extend([" | ".join(row) for row in data])
|
35 |
-
all_data.append("\n")
|
36 |
except gspread.exceptions.WorksheetNotFound:
|
37 |
all_data.append(f"❌ ERROR: Worksheet {sheet_name} tidak ditemukan.")
|
38 |
|
39 |
-
|
|
|
40 |
|
41 |
except gspread.exceptions.SpreadsheetNotFound:
|
42 |
return "❌ ERROR: Spreadsheet tidak ditemukan!"
|
43 |
-
|
44 |
-
except Exception as e:
|
45 |
-
return f"❌ ERROR: {str(e)}"
|
46 |
-
|
47 |
-
# ===================================
|
48 |
-
# 2️⃣ Inisialisasi Model Llama
|
49 |
# ===================================
|
50 |
def initialize_llama_model():
|
51 |
model_path = hf_hub_download(
|
52 |
-
repo_id="
|
53 |
filename="zephyr-7b-beta.Q4_K_M.gguf",
|
54 |
cache_dir="./models"
|
55 |
)
|
56 |
-
return model_path
|
57 |
-
|
58 |
# ===================================
|
59 |
# 3️⃣ Inisialisasi Pengaturan Model
|
60 |
# ===================================
|
|
|
61 |
def initialize_settings(model_path):
|
62 |
-
Settings.llm = LlamaCPP(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# ===================================
|
65 |
# 4️⃣ Inisialisasi Index & Chat Engine
|
66 |
-
# ===================================
|
67 |
-
def initialize_index():
|
68 |
-
text_data = read_google_sheets()
|
69 |
-
document = Document(text=text_data)
|
70 |
parser = SentenceSplitter(chunk_size=100, chunk_overlap=30)
|
71 |
nodes = parser.get_nodes_from_documents([document])
|
72 |
|
73 |
-
embedding = HuggingFaceEmbedding("sentence-transformers/
|
74 |
Settings.embed_model = embedding
|
75 |
|
76 |
index = VectorStoreIndex(nodes)
|
77 |
return index
|
78 |
|
79 |
def initialize_chat_engine(index):
|
80 |
-
retriever = index.as_retriever(similarity_top_k=
|
81 |
chat_engine = CondensePlusContextChatEngine.from_defaults(
|
82 |
retriever=retriever,
|
83 |
-
verbose=False
|
84 |
)
|
85 |
return chat_engine
|
86 |
|
87 |
-
# ===================================
|
88 |
# 5️⃣ Fungsi untuk Merapikan Jawaban Chatbot
|
89 |
# ===================================
|
90 |
def clean_response(response):
|
91 |
-
text = "".join(response.response_gen)
|
92 |
-
text = text.replace("\n\n", "\n").strip()
|
93 |
text = text.replace("user:", "").replace("jawaban:", "").replace("assistant:", "").strip()
|
94 |
return text
|
95 |
|
96 |
-
# ===================================
|
97 |
-
# 6️⃣ Fungsi untuk Menghasilkan Respons Chatbot
|
98 |
-
# ===================================
|
99 |
-
def generate_response(message, history, chat_engine):
|
100 |
-
if history is None:
|
101 |
-
history = []
|
102 |
-
|
103 |
-
chat_messages = [
|
104 |
-
ChatMessage(
|
105 |
-
role="system",
|
106 |
-
content=(
|
107 |
-
"Anda adalah chatbot HRD yang membantu karyawan memahami administrasi perusahaan. "
|
108 |
"Jangan menjawab menggunakan Bahasa Inggris. "
|
109 |
"Gunakan Bahasa Indonesia dengan gaya profesional dan ramah. "
|
110 |
"Jika informasi tidak tersedia dalam dokumen, katakan dengan sopan bahwa Anda tidak tahu. "
|
111 |
-
"Jawaban harus singkat, jelas, dan sesuai konteks."
|
112 |
"Jangan memberikan jawaban untuk pertanyaan yang tidak diajukan oleh pengguna. "
|
113 |
"Jangan menyertakan rekomendasi pertanyaan lain."
|
114 |
),
|
115 |
),
|
116 |
]
|
117 |
|
118 |
-
response = chat_engine.
|
119 |
-
cleaned_text =
|
120 |
|
121 |
-
history.append((message, cleaned_text))
|
122 |
return cleaned_text
|
123 |
|
124 |
-
# ===================================
|
125 |
-
# 7️⃣ Fungsi Utama untuk Menjalankan Aplikasi
|
126 |
# ===================================
|
127 |
def main():
|
128 |
model_path = initialize_llama_model()
|
129 |
initialize_settings(model_path)
|
130 |
-
|
131 |
index = initialize_index()
|
132 |
chat_engine = initialize_chat_engine(index)
|
133 |
-
|
134 |
def chatbot_response(message, history):
|
135 |
return generate_response(message, history, chat_engine)
|
136 |
|
|
|
1 |
import gradio as gr
|
2 |
import gspread
|
3 |
+
import time
|
4 |
from oauth2client.service_account import ServiceAccountCredentials
|
5 |
from llama_cpp import Llama
|
6 |
from llama_index.core import VectorStoreIndex, Settings
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from llama_index.core.schema import Document
|
8 |
|
9 |
# ===================================
|
10 |
+
# 1️⃣ Cache Data Google Sheets
|
11 |
# ===================================
|
12 |
+
cached_text_data = None
|
13 |
+
|
14 |
def read_google_sheets():
|
15 |
+
global cached_text_data
|
16 |
+
if cached_text_data is not None:
|
17 |
+
return cached_text_data
|
18 |
+
|
19 |
try:
|
20 |
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
|
21 |
creds = ServiceAccountCredentials.from_json_keyfile_name("credentials.json", scope)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
except gspread.exceptions.WorksheetNotFound:
|
23 |
all_data.append(f"❌ ERROR: Worksheet {sheet_name} tidak ditemukan.")
|
24 |
|
25 |
+
cached_text_data = "\n".join(all_data).strip()
|
26 |
+
return cached_text_data
|
27 |
|
28 |
except gspread.exceptions.SpreadsheetNotFound:
|
29 |
return "❌ ERROR: Spreadsheet tidak ditemukan!"
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# ===================================
|
31 |
def initialize_llama_model():
|
32 |
model_path = hf_hub_download(
|
33 |
+
repo_id="TheBloke/zephyr-7b-beta-GGUF",
|
34 |
filename="zephyr-7b-beta.Q4_K_M.gguf",
|
35 |
cache_dir="./models"
|
36 |
)
|
|
|
|
|
37 |
# ===================================
|
38 |
# 3️⃣ Inisialisasi Pengaturan Model
|
39 |
# ===================================
|
40 |
+
|
41 |
def initialize_settings(model_path):
|
42 |
+
Settings.llm = LlamaCPP(
|
43 |
+
model_path=model_path,
|
44 |
+
temperature=0.7,
|
45 |
+
context_window=4096,
|
46 |
+
max_new_tokens=512,
|
47 |
+
# n_gpu_layers=20, # ❌ Hapus jika error
|
48 |
+
model_kwargs={"n_ctx": 4096}
|
49 |
+
)
|
50 |
+
|
51 |
|
52 |
# ===================================
|
53 |
# 4️⃣ Inisialisasi Index & Chat Engine
|
|
|
|
|
|
|
|
|
54 |
parser = SentenceSplitter(chunk_size=100, chunk_overlap=30)
|
55 |
nodes = parser.get_nodes_from_documents([document])
|
56 |
|
57 |
+
embedding = HuggingFaceEmbedding("sentence-transformers/all-MiniLM-L6-v2") # ✅ Lebih ringan
|
58 |
Settings.embed_model = embedding
|
59 |
|
60 |
index = VectorStoreIndex(nodes)
|
61 |
return index
|
62 |
|
63 |
def initialize_chat_engine(index):
|
64 |
+
retriever = index.as_retriever(similarity_top_k=1) # ✅ Kurangi ke 1 untuk kecepatan
|
65 |
chat_engine = CondensePlusContextChatEngine.from_defaults(
|
66 |
retriever=retriever,
|
67 |
+
verbose=False
|
68 |
)
|
69 |
return chat_engine
|
70 |
|
|
|
71 |
# 5️⃣ Fungsi untuk Merapikan Jawaban Chatbot
|
72 |
# ===================================
|
73 |
def clean_response(response):
|
74 |
+
text = "".join(response.response_gen)
|
75 |
+
text = text.replace("\n\n", "\n").strip()
|
76 |
text = text.replace("user:", "").replace("jawaban:", "").replace("assistant:", "").strip()
|
77 |
return text
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
"Jangan menjawab menggunakan Bahasa Inggris. "
|
80 |
"Gunakan Bahasa Indonesia dengan gaya profesional dan ramah. "
|
81 |
"Jika informasi tidak tersedia dalam dokumen, katakan dengan sopan bahwa Anda tidak tahu. "
|
82 |
+
"Jawaban harus singkat, jelas, dan sesuai konteks. "
|
83 |
"Jangan memberikan jawaban untuk pertanyaan yang tidak diajukan oleh pengguna. "
|
84 |
"Jangan menyertakan rekomendasi pertanyaan lain."
|
85 |
),
|
86 |
),
|
87 |
]
|
88 |
|
89 |
+
response = chat_engine.chat(message) # GANTI: pakai .chat() bukan .stream_chat()
|
90 |
+
cleaned_text = response.response.strip() # GANTI: langsung ambil response
|
91 |
|
92 |
+
history.append((message, cleaned_text))
|
93 |
return cleaned_text
|
94 |
|
|
|
|
|
95 |
# ===================================
|
96 |
def main():
|
97 |
model_path = initialize_llama_model()
|
98 |
initialize_settings(model_path)
|
99 |
+
|
100 |
index = initialize_index()
|
101 |
chat_engine = initialize_chat_engine(index)
|
102 |
+
|
103 |
def chatbot_response(message, history):
|
104 |
return generate_response(message, history, chat_engine)
|
105 |
|