Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import gspread
|
3 |
-
import time
|
4 |
from oauth2client.service_account import ServiceAccountCredentials
|
5 |
from llama_cpp import Llama
|
6 |
from llama_index.core import VectorStoreIndex, Settings
|
@@ -13,15 +12,9 @@ from llama_index.core.chat_engine.condense_plus_context import CondensePlusConte
|
|
13 |
from llama_index.core.schema import Document
|
14 |
|
15 |
# ===================================
|
16 |
-
# 1️⃣
|
17 |
# ===================================
|
18 |
-
cached_text_data = None
|
19 |
-
|
20 |
def read_google_sheets():
|
21 |
-
global cached_text_data
|
22 |
-
if cached_text_data is not None:
|
23 |
-
return cached_text_data
|
24 |
-
|
25 |
try:
|
26 |
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
|
27 |
creds = ServiceAccountCredentials.from_json_keyfile_name("credentials.json", scope)
|
@@ -43,8 +36,7 @@ def read_google_sheets():
|
|
43 |
except gspread.exceptions.WorksheetNotFound:
|
44 |
all_data.append(f"❌ ERROR: Worksheet {sheet_name} tidak ditemukan.")
|
45 |
|
46 |
-
|
47 |
-
return cached_text_data
|
48 |
|
49 |
except gspread.exceptions.SpreadsheetNotFound:
|
50 |
return "❌ ERROR: Spreadsheet tidak ditemukan!"
|
@@ -57,7 +49,7 @@ def read_google_sheets():
|
|
57 |
# ===================================
|
58 |
def initialize_llama_model():
|
59 |
model_path = hf_hub_download(
|
60 |
-
repo_id="
|
61 |
filename="zephyr-7b-beta.Q4_K_M.gguf",
|
62 |
cache_dir="./models"
|
63 |
)
|
@@ -66,17 +58,8 @@ def initialize_llama_model():
|
|
66 |
# ===================================
|
67 |
# 3️⃣ Inisialisasi Pengaturan Model
|
68 |
# ===================================
|
69 |
-
|
70 |
def initialize_settings(model_path):
|
71 |
-
Settings.llm = LlamaCPP(
|
72 |
-
model_path=model_path,
|
73 |
-
temperature=0.7,
|
74 |
-
context_window=4096,
|
75 |
-
max_new_tokens=512,
|
76 |
-
# n_gpu_layers=20, # ❌ Hapus jika error
|
77 |
-
model_kwargs={"n_ctx": 4096}
|
78 |
-
)
|
79 |
-
|
80 |
|
81 |
# ===================================
|
82 |
# 4️⃣ Inisialisasi Index & Chat Engine
|
@@ -87,17 +70,17 @@ def initialize_index():
|
|
87 |
parser = SentenceSplitter(chunk_size=100, chunk_overlap=30)
|
88 |
nodes = parser.get_nodes_from_documents([document])
|
89 |
|
90 |
-
embedding = HuggingFaceEmbedding("sentence-transformers/
|
91 |
Settings.embed_model = embedding
|
92 |
|
93 |
index = VectorStoreIndex(nodes)
|
94 |
return index
|
95 |
|
96 |
def initialize_chat_engine(index):
|
97 |
-
retriever = index.as_retriever(similarity_top_k=
|
98 |
chat_engine = CondensePlusContextChatEngine.from_defaults(
|
99 |
retriever=retriever,
|
100 |
-
verbose=False
|
101 |
)
|
102 |
return chat_engine
|
103 |
|
@@ -105,8 +88,8 @@ def initialize_chat_engine(index):
|
|
105 |
# 5️⃣ Fungsi untuk Merapikan Jawaban Chatbot
|
106 |
# ===================================
|
107 |
def clean_response(response):
|
108 |
-
text = "".join(response.response_gen)
|
109 |
-
text = text.replace("\n\n", "\n").strip()
|
110 |
text = text.replace("user:", "").replace("jawaban:", "").replace("assistant:", "").strip()
|
111 |
return text
|
112 |
|
@@ -125,17 +108,17 @@ def generate_response(message, history, chat_engine):
|
|
125 |
"Jangan menjawab menggunakan Bahasa Inggris. "
|
126 |
"Gunakan Bahasa Indonesia dengan gaya profesional dan ramah. "
|
127 |
"Jika informasi tidak tersedia dalam dokumen, katakan dengan sopan bahwa Anda tidak tahu. "
|
128 |
-
"Jawaban harus singkat, jelas, dan sesuai konteks.
|
129 |
"Jangan memberikan jawaban untuk pertanyaan yang tidak diajukan oleh pengguna. "
|
130 |
"Jangan menyertakan rekomendasi pertanyaan lain."
|
131 |
),
|
132 |
),
|
133 |
]
|
134 |
|
135 |
-
response = chat_engine.
|
136 |
-
cleaned_text = response
|
137 |
|
138 |
-
history.append((message, cleaned_text))
|
139 |
return cleaned_text
|
140 |
|
141 |
# ===================================
|
@@ -144,10 +127,10 @@ def generate_response(message, history, chat_engine):
|
|
144 |
def main():
|
145 |
model_path = initialize_llama_model()
|
146 |
initialize_settings(model_path)
|
147 |
-
|
148 |
index = initialize_index()
|
149 |
chat_engine = initialize_chat_engine(index)
|
150 |
-
|
151 |
def chatbot_response(message, history):
|
152 |
return generate_response(message, history, chat_engine)
|
153 |
|
|
|
1 |
import gradio as gr
|
2 |
import gspread
|
|
|
3 |
from oauth2client.service_account import ServiceAccountCredentials
|
4 |
from llama_cpp import Llama
|
5 |
from llama_index.core import VectorStoreIndex, Settings
|
|
|
12 |
from llama_index.core.schema import Document
|
13 |
|
14 |
# ===================================
|
15 |
+
# 1️⃣ Fungsi Membaca Data Google Spreadsheet
|
16 |
# ===================================
|
|
|
|
|
17 |
def read_google_sheets():
|
|
|
|
|
|
|
|
|
18 |
try:
|
19 |
scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"]
|
20 |
creds = ServiceAccountCredentials.from_json_keyfile_name("credentials.json", scope)
|
|
|
36 |
except gspread.exceptions.WorksheetNotFound:
|
37 |
all_data.append(f"❌ ERROR: Worksheet {sheet_name} tidak ditemukan.")
|
38 |
|
39 |
+
return "\n".join(all_data).strip()
|
|
|
40 |
|
41 |
except gspread.exceptions.SpreadsheetNotFound:
|
42 |
return "❌ ERROR: Spreadsheet tidak ditemukan!"
|
|
|
49 |
# ===================================
|
50 |
def initialize_llama_model():
|
51 |
model_path = hf_hub_download(
|
52 |
+
repo_id="TheBLoke/zephyr-7b-beta-GGUF",
|
53 |
filename="zephyr-7b-beta.Q4_K_M.gguf",
|
54 |
cache_dir="./models"
|
55 |
)
|
|
|
58 |
# ===================================
|
59 |
# 3️⃣ Inisialisasi Pengaturan Model
|
60 |
# ===================================
|
|
|
61 |
def initialize_settings(model_path):
|
62 |
+
Settings.llm = LlamaCPP(model_path=model_path, temperature=0.7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# ===================================
|
65 |
# 4️⃣ Inisialisasi Index & Chat Engine
|
|
|
70 |
parser = SentenceSplitter(chunk_size=100, chunk_overlap=30)
|
71 |
nodes = parser.get_nodes_from_documents([document])
|
72 |
|
73 |
+
embedding = HuggingFaceEmbedding("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
74 |
Settings.embed_model = embedding
|
75 |
|
76 |
index = VectorStoreIndex(nodes)
|
77 |
return index
|
78 |
|
79 |
def initialize_chat_engine(index):
|
80 |
+
retriever = index.as_retriever(similarity_top_k=3)
|
81 |
chat_engine = CondensePlusContextChatEngine.from_defaults(
|
82 |
retriever=retriever,
|
83 |
+
verbose=False # ❌ Hapus verbose agar tidak ada referensi dokumen
|
84 |
)
|
85 |
return chat_engine
|
86 |
|
|
|
88 |
# 5️⃣ Fungsi untuk Merapikan Jawaban Chatbot
|
89 |
# ===================================
|
90 |
def clean_response(response):
|
91 |
+
text = "".join(response.response_gen) # Gabungkan teks yang dihasilkan
|
92 |
+
text = text.replace("\n\n", "\n").strip() # Hilangkan newline berlebihan
|
93 |
text = text.replace("user:", "").replace("jawaban:", "").replace("assistant:", "").strip()
|
94 |
return text
|
95 |
|
|
|
108 |
"Jangan menjawab menggunakan Bahasa Inggris. "
|
109 |
"Gunakan Bahasa Indonesia dengan gaya profesional dan ramah. "
|
110 |
"Jika informasi tidak tersedia dalam dokumen, katakan dengan sopan bahwa Anda tidak tahu. "
|
111 |
+
"Jawaban harus singkat, jelas, dan sesuai konteks."
|
112 |
"Jangan memberikan jawaban untuk pertanyaan yang tidak diajukan oleh pengguna. "
|
113 |
"Jangan menyertakan rekomendasi pertanyaan lain."
|
114 |
),
|
115 |
),
|
116 |
]
|
117 |
|
118 |
+
response = chat_engine.stream_chat(message)
|
119 |
+
cleaned_text = clean_response(response) # 🔹 Gunakan fungsi clean_response()
|
120 |
|
121 |
+
history.append((message, cleaned_text)) # 🔹 Pastikan hanya teks yang masuk ke history
|
122 |
return cleaned_text
|
123 |
|
124 |
# ===================================
|
|
|
127 |
def main():
|
128 |
model_path = initialize_llama_model()
|
129 |
initialize_settings(model_path)
|
130 |
+
|
131 |
index = initialize_index()
|
132 |
chat_engine = initialize_chat_engine(index)
|
133 |
+
|
134 |
def chatbot_response(message, history):
|
135 |
return generate_response(message, history, chat_engine)
|
136 |
|