Spaces:
Running
Running
import streamlit as st | |
import plotly.express as px | |
import numpy as np | |
import plotly.graph_objects as go | |
from utilities_with_panel import channel_name_formating, load_authenticator, initialize_data | |
from sklearn.metrics import r2_score | |
from collections import OrderedDict | |
from classes import class_from_dict,class_to_dict | |
import pickle | |
import json | |
import pandas as pd | |
from utilities import ( | |
load_local_css, | |
set_header, | |
channel_name_formating, | |
) | |
for k, v in st.session_state.items(): | |
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'): | |
st.session_state[k] = v | |
def s_curve(x,K,b,a,x0): | |
return K / (1 + b*np.exp(-a*(x-x0))) | |
def save_scenario(scenario_name): | |
""" | |
Save the current scenario with the mentioned name in the session state | |
Parameters | |
---------- | |
scenario_name | |
Name of the scenario to be saved | |
""" | |
if 'saved_scenarios' not in st.session_state: | |
st.session_state = OrderedDict() | |
#st.session_state['saved_scenarios'][scenario_name] = st.session_state['scenario'].save() | |
st.session_state['saved_scenarios'][scenario_name] = class_to_dict(st.session_state['scenario']) | |
st.session_state['scenario_input'] = "" | |
print(type(st.session_state['saved_scenarios'])) | |
with open('../saved_scenarios.pkl', 'wb') as f: | |
pickle.dump(st.session_state['saved_scenarios'],f) | |
def reset_curve_parameters(): | |
del st.session_state['K'] | |
del st.session_state['b'] | |
del st.session_state['a'] | |
del st.session_state['x0'] | |
def update_response_curve(): | |
# st.session_state['rcs'][selected_channel_name]['K'] = st.session_state['K'] | |
# st.session_state['rcs'][selected_channel_name]['b'] = st.session_state['b'] | |
# st.session_state['rcs'][selected_channel_name]['a'] = st.session_state['a'] | |
# st.session_state['rcs'][selected_channel_name]['x0'] = st.session_state['x0'] | |
# rcs = st.session_state['rcs'] | |
_channel_class = st.session_state['scenario'].channels[selected_channel_name] | |
_channel_class.update_response_curves({ | |
'K' : st.session_state['K'], | |
'b' : st.session_state['b'], | |
'a' : st.session_state['a'], | |
'x0' : st.session_state['x0']}) | |
# authenticator = st.session_state.get('authenticator') | |
# if authenticator is None: | |
# authenticator = load_authenticator() | |
# name, authentication_status, username = authenticator.login('Login', 'main') | |
# auth_status = st.session_state.get('authentication_status') | |
# if auth_status == True: | |
# is_state_initiaized = st.session_state.get('initialized',False) | |
# if not is_state_initiaized: | |
# print("Scenario page state reloaded") | |
# Sprint4 - if used_response_metrics is not blank, then select one of the used_response_metrics, else target is revenue by default | |
st.set_page_config(layout='wide') | |
load_local_css('styles.css') | |
set_header() | |
def panel_fetch(file_selected): | |
raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM") | |
if "Panel" in raw_data_mmm_df.columns: | |
panel = list(set(raw_data_mmm_df["Panel"])) | |
else: | |
raw_data_mmm_df = None | |
panel = None | |
return panel | |
metrics_selected='Revenue' | |
file_selected = ( | |
f".\metrics_level_data\Overview_data_test_panel@#{metrics_selected}.xlsx" | |
) | |
panel_list = panel_fetch(file_selected) | |
if "used_response_metrics" in st.session_state and st.session_state['used_response_metrics']!=[]: | |
sel_target_col = st.selectbox("Select the response metric", st.session_state['used_response_metrics']) | |
target_col = sel_target_col.lower().replace(" ", "_").replace('-', '').replace(':', '').replace("__", "_") | |
else : | |
sel_target_col = 'Total Approved Accounts - Revenue' | |
target_col = 'total_approved_accounts_revenue' | |
st.subheader("Build response curves") | |
st.session_state['selected_markets']= st.selectbox( | |
"Select Markets", | |
["Total Market"] + panel_list, | |
index=0, | |
) | |
initialize_data(target_col,st.session_state['selected_markets']) | |
channels_list = st.session_state['channels_list'] | |
selected_channel_name = st.selectbox('Channel', st.session_state['channels_list'], format_func=channel_name_formating,on_change=reset_curve_parameters) | |
rcs = {} | |
for channel_name in channels_list: | |
rcs[channel_name] = st.session_state['scenario'].channels[channel_name].response_curve_params | |
# rcs = st.session_state['rcs'] | |
if 'K' not in st.session_state: | |
st.session_state['K'] = rcs[selected_channel_name]['K'] | |
if 'b' not in st.session_state: | |
st.session_state['b'] = rcs[selected_channel_name]['b'] | |
if 'a' not in st.session_state: | |
st.session_state['a'] = rcs[selected_channel_name]['a'] | |
if 'x0' not in st.session_state: | |
st.session_state['x0'] = rcs[selected_channel_name]['x0'] | |
x = st.session_state['actual_input_df'][selected_channel_name].values | |
y = st.session_state['actual_contribution_df'][selected_channel_name].values | |
power = (np.ceil(np.log(x.max()) / np.log(10) )- 3) | |
# fig = px.scatter(x, s_curve(x/10**power, | |
# st.session_state['K'], | |
# st.session_state['b'], | |
# st.session_state['a'], | |
# st.session_state['x0'])) | |
fig = px.scatter(x=x, y=y) | |
fig.add_trace(go.Scatter(x=sorted(x), y=s_curve(sorted(x)/10**power,st.session_state['K'], | |
st.session_state['b'], | |
st.session_state['a'], | |
st.session_state['x0']), | |
line=dict(color='red'))) | |
fig.update_layout(title_text="Response Curve",showlegend=False) | |
fig.update_annotations(font_size=10) | |
fig.update_xaxes(title='Spends') | |
fig.update_yaxes(title=sel_target_col) | |
st.plotly_chart(fig,use_container_width=True) | |
r2 = r2_score(y, s_curve(x / 10**power, | |
st.session_state['K'], | |
st.session_state['b'], | |
st.session_state['a'], | |
st.session_state['x0'])) | |
st.metric('R2',round(r2,2)) | |
columns = st.columns(4) | |
with columns[0]: | |
st.number_input('K',key='K',format="%0.5f") | |
with columns[1]: | |
st.number_input('b',key='b',format="%0.5f") | |
with columns[2]: | |
st.number_input('a',key='a',step=0.0001,format="%0.5f") | |
with columns[3]: | |
st.number_input('x0',key='x0',format="%0.5f") | |
st.button('Update parameters',on_click=update_response_curve) | |
st.button('Reset parameters',on_click=reset_curve_parameters) | |
scenario_name = st.text_input('Scenario name', key='scenario_input',placeholder='Scenario name',label_visibility='collapsed') | |
st.button('Save', on_click=lambda : save_scenario(scenario_name),disabled=len(st.session_state['scenario_input']) == 0) | |
file_name = st.text_input('rcs download file name', key='file_name_input',placeholder='file name',label_visibility='collapsed') | |
st.download_button( | |
label="Download response curves", | |
data=json.dumps(rcs), | |
file_name=f"{file_name}.json", | |
mime="application/json", | |
disabled= len(file_name) == 0, | |
) | |
def s_curve_derivative(x, K, b, a, x0): | |
# Derivative of the S-curve function | |
return a * b * K * np.exp(-a * (x - x0)) / ((1 + b * np.exp(-a * (x - x0))) ** 2) | |
# Parameters of the S-curve | |
K = st.session_state['K'] | |
b = st.session_state['b'] | |
a = st.session_state['a'] | |
x0 = st.session_state['x0'] | |
# Optimized spend value obtained from the tool | |
optimized_spend = st.number_input('value of x') # Replace this with your optimized spend value | |
# Calculate the slope at the optimized spend value | |
slope_at_optimized_spend = s_curve_derivative(optimized_spend, K, b, a, x0) | |
st.write("Slope ", slope_at_optimized_spend) |